Delivering sustainable solutions in a more competitive world

Carbon Balances and Energy Impacts of the Management of UK Wastes

Defra R&D Project WRT 237

Annex C

December 2006
Annex C

Carbon and Greenhouse Gas Balances
Carbon and greenhouse gas balances for each waste material and scenario are shown in the following diagrams. Each details:

- the carbon that remains within the material fraction following treatment or disposal (both carbon in inert fractions that have been deposited in land, as well as organic carbon that has not degraded but is sequestered in landfill or other soil carbon sink);
- carbon that is contained in products, such as recyclate or composts; and
- carbon that is released to atmosphere, as carbon dioxide (fossil/biogenically derived) or methane.

A greenhouse gas balance is shown in red, detailing:

- ‘ancillary’ greenhouse gas emissions predominantly associated with fuel, energy and transport;
- greenhouse gas releases directly associated with the degradation of waste materials (eg on biological processing or landfill of biogenic wastes, or combustion of fossil-derived materials); and
- avoided greenhouse gases through resource and energy recovery.

The information contained in these diagrams is summarised in Table C1.1.
<table>
<thead>
<tr>
<th>Material/Scenario</th>
<th>Carbon in Waste</th>
<th>Carbon Released as CO₂ (Biogenic)</th>
<th>Carbon Released as CO₂ (Fossil)</th>
<th>Carbon Released as CH₄</th>
<th>Carbon in Products</th>
<th>Carbon Remaining in Landfill/ Soil</th>
<th>Ancillary GHG Emissions</th>
<th>GHG Released from Fraction</th>
<th>Avoided GHG (Max)</th>
<th>Avoided GHG (Min)</th>
<th>Net GHG (Max)</th>
<th>Net GHG (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper/Card Baseline</td>
<td>118.0</td>
<td>57.7</td>
<td>0.0</td>
<td>4.6</td>
<td>47.2</td>
<td>8.5</td>
<td>4.6</td>
<td>140.0</td>
<td>-127.3</td>
<td>-68.4</td>
<td>17.2</td>
<td>76.1</td>
</tr>
<tr>
<td>Paper/Card High Resource</td>
<td>118.0</td>
<td>42.1</td>
<td>0.0</td>
<td>3.6</td>
<td>64.5</td>
<td>7.8</td>
<td>5.0</td>
<td>110.1</td>
<td>-150.8</td>
<td>-77.5</td>
<td>-35.7</td>
<td>37.6</td>
</tr>
<tr>
<td>Paper/Card High Energy</td>
<td>118.0</td>
<td>85.3</td>
<td>0.0</td>
<td>2.7</td>
<td>24.1</td>
<td>5.9</td>
<td>6.1</td>
<td>83.6</td>
<td>-187.9</td>
<td>-80.8</td>
<td>-98.1</td>
<td>8.9</td>
</tr>
<tr>
<td>Paper/Card Combined</td>
<td>118.0</td>
<td>42.7</td>
<td>0.0</td>
<td>3.4</td>
<td>64.6</td>
<td>7.3</td>
<td>5.2</td>
<td>103.7</td>
<td>-115.0</td>
<td>-78.5</td>
<td>-46.0</td>
<td>30.5</td>
</tr>
<tr>
<td>Kitchen/Food Baseline</td>
<td>43.0</td>
<td>33.0</td>
<td>0.0</td>
<td>2.2</td>
<td>1.9</td>
<td>5.9</td>
<td>3.2</td>
<td>66.5</td>
<td>-22.7</td>
<td>-17.8</td>
<td>47.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Kitchen/Food High Resource</td>
<td>43.0</td>
<td>29.2</td>
<td>0.0</td>
<td>1.5</td>
<td>8.2</td>
<td>4.1</td>
<td>5.5</td>
<td>45.3</td>
<td>-15.2</td>
<td>-12.4</td>
<td>35.6</td>
<td>38.4</td>
</tr>
<tr>
<td>Kitchen/Food High Energy</td>
<td>43.0</td>
<td>27.7</td>
<td>0.0</td>
<td>1.2</td>
<td>10.7</td>
<td>3.3</td>
<td>8.6</td>
<td>38.3</td>
<td>-48.4</td>
<td>-27.1</td>
<td>-1.5</td>
<td>19.7</td>
</tr>
<tr>
<td>Kitchen/Food Combined</td>
<td>43.0</td>
<td>28.1</td>
<td>0.0</td>
<td>1.3</td>
<td>10.1</td>
<td>3.6</td>
<td>8.7</td>
<td>39.3</td>
<td>-20.0</td>
<td>-14.0</td>
<td>28.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Green Baseline</td>
<td>49.2</td>
<td>34.5</td>
<td>0.0</td>
<td>1.0</td>
<td>3.2</td>
<td>5.1</td>
<td>3.2</td>
<td>29.9</td>
<td>-11.9</td>
<td>-8.5</td>
<td>21.2</td>
<td>24.6</td>
</tr>
<tr>
<td>Green High Resource</td>
<td>49.2</td>
<td>34.5</td>
<td>0.0</td>
<td>0.6</td>
<td>10.6</td>
<td>3.4</td>
<td>5.5</td>
<td>20.1</td>
<td>-7.6</td>
<td>-5.7</td>
<td>18.0</td>
<td>19.9</td>
</tr>
<tr>
<td>Green High Energy</td>
<td>49.2</td>
<td>33.1</td>
<td>0.0</td>
<td>0.5</td>
<td>12.7</td>
<td>2.9</td>
<td>6.1</td>
<td>17.42</td>
<td>-47.6</td>
<td>-24.0</td>
<td>-24.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>Manure/Slurry Baseline</td>
<td>388.6</td>
<td>379.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>9.4</td>
<td>8.3</td>
<td>0.0</td>
<td>-17.2</td>
<td>-3.2</td>
<td>-8.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Manure/Slurry High Resource</td>
<td>388.6</td>
<td>333.2</td>
<td>0.0</td>
<td>0.0</td>
<td>48.4</td>
<td>7.0</td>
<td>16.3</td>
<td>1.9</td>
<td>-14.7</td>
<td>-2.5</td>
<td>3.5</td>
<td>15.7</td>
</tr>
<tr>
<td>Manure/Slurry High Energy</td>
<td>388.6</td>
<td>333.0</td>
<td>0.0</td>
<td>0.0</td>
<td>48.6</td>
<td>7.0</td>
<td>22.7</td>
<td>2.2</td>
<td>-191.3</td>
<td>-84.6</td>
<td>-166.3</td>
<td>-59.6</td>
</tr>
<tr>
<td>Crop Waste Baseline</td>
<td>22.0</td>
<td>21.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.8</td>
<td>0.0</td>
<td>-4.7</td>
<td>-1.4</td>
<td>-3.9</td>
<td>-0.7</td>
</tr>
<tr>
<td>Crop Waste High Resource</td>
<td>22.0</td>
<td>19.0</td>
<td>0.0</td>
<td>0.01</td>
<td>2.5</td>
<td>0.5</td>
<td>1.3</td>
<td>0.6</td>
<td>-2.8</td>
<td>-0.8</td>
<td>-0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Crop Waste High Energy</td>
<td>22.0</td>
<td>21.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>1.5</td>
<td>0.1</td>
<td>-41.8</td>
<td>-14.6</td>
<td>-40.2</td>
<td>-13.0</td>
</tr>
<tr>
<td>Other Organics Baseline</td>
<td>28.6</td>
<td>26.1</td>
<td>0.0</td>
<td>0.1</td>
<td>1.7</td>
<td>0.7</td>
<td>1.7</td>
<td>2.6</td>
<td>-7.9</td>
<td>-3.0</td>
<td>-3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Other Organics High Resource</td>
<td>28.6</td>
<td>23.1</td>
<td>0.0</td>
<td>0.1</td>
<td>4.8</td>
<td>0.7</td>
<td>2.0</td>
<td>3.0</td>
<td>-4.5</td>
<td>-1.9</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Other Organics High Energy</td>
<td>28.6</td>
<td>26.5</td>
<td>0.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>2.0</td>
<td>2.8</td>
<td>-29.3</td>
<td>-10.7</td>
<td>-24.5</td>
<td>-5.9</td>
</tr>
<tr>
<td>Other Organics Combined</td>
<td>28.6</td>
<td>23.0</td>
<td>0.0</td>
<td>0.1</td>
<td>5.0</td>
<td>0.5</td>
<td>0.0</td>
<td>3.0</td>
<td>-14.4</td>
<td>-5.0</td>
<td>-11.4</td>
<td>-2.0</td>
</tr>
<tr>
<td>Wood Baseline</td>
<td>88.7</td>
<td>70.3</td>
<td>0.0</td>
<td>1.6</td>
<td>12.0</td>
<td>4.7</td>
<td>1.7</td>
<td>50.6</td>
<td>-18.4</td>
<td>-11.5</td>
<td>338.0</td>
<td>40.7</td>
</tr>
<tr>
<td>Wood High Resource</td>
<td>88.7</td>
<td>59.2</td>
<td>0.0</td>
<td>1.4</td>
<td>24.2</td>
<td>3.9</td>
<td>2.0</td>
<td>43.4</td>
<td>-16.8</td>
<td>-9.3</td>
<td>28.5</td>
<td>36.0</td>
</tr>
<tr>
<td>Wood High Energy</td>
<td>88.7</td>
<td>79.1</td>
<td>0.0</td>
<td>0.9</td>
<td>6.1</td>
<td>2.6</td>
<td>2.9</td>
<td>28.5</td>
<td>-110.6</td>
<td>-42.5</td>
<td>-79.2</td>
<td>-11.1</td>
</tr>
<tr>
<td>Wood Combined</td>
<td>88.7</td>
<td>60.8</td>
<td>0.0</td>
<td>1.0</td>
<td>24.2</td>
<td>2.7</td>
<td>2.6</td>
<td>31.2</td>
<td>-59.8</td>
<td>-23.4</td>
<td>-26.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Textiles Baseline</td>
<td>15.0</td>
<td>10.3</td>
<td>0.8</td>
<td>0.2</td>
<td>1.7</td>
<td>1.9</td>
<td>0.3</td>
<td>9.7</td>
<td>-11.4</td>
<td>-6.1</td>
<td>-1.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Textiles Resource</td>
<td>15.0</td>
<td>8.7</td>
<td>0.4</td>
<td>0.2</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>7.4</td>
<td>-19.6</td>
<td>-10.6</td>
<td>-11.8</td>
<td>-2.8</td>
</tr>
<tr>
<td>Textiles High Energy</td>
<td>15.0</td>
<td>9.1</td>
<td>0.7</td>
<td>0.1</td>
<td>0.9</td>
<td>1.1</td>
<td>0.6</td>
<td>17.6</td>
<td>-21.8</td>
<td>-8.8</td>
<td>-3.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Material/Scenario</td>
<td>Carbon in Waste</td>
<td>Carbon Released as CO(_2) (Biogenic)</td>
<td>Carbon Released as CO(_2) (Fossil)</td>
<td>Carbon Released as CH(_4)</td>
<td>Carbon in Products</td>
<td>Carbon Remaining in Landfill/Soil</td>
<td>Ancillary GHG Emissions</td>
<td>GHG Released from Fraction</td>
<td>Avoided GHG (Max)</td>
<td>Avoided GHG (Min)</td>
<td>Net GHG (Max)</td>
<td>Net GHG (Min)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Textiles Combined</td>
<td>15.0</td>
<td>7.8</td>
<td>1.9</td>
<td>0.1</td>
<td>4.0</td>
<td>1.2</td>
<td>0.5</td>
<td>11.1</td>
<td>-26.6</td>
<td>-13.0</td>
<td>-15.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>Dense Plastic Baseline</td>
<td>41.2</td>
<td>0.0</td>
<td>3.7</td>
<td>0.0</td>
<td>1.4</td>
<td>36.0</td>
<td>0.6</td>
<td>13.8</td>
<td>-13.3</td>
<td>-0.8</td>
<td>1.0</td>
<td>13.5</td>
</tr>
<tr>
<td>Dense Plastic High Resource</td>
<td>41.2</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>10.9</td>
<td>28.4</td>
<td>0.7</td>
<td>6.88</td>
<td>-40.5</td>
<td>15.4</td>
<td>-32.9</td>
<td>23.0</td>
</tr>
<tr>
<td>Dense Plastic High Energy</td>
<td>41.2</td>
<td>0.00</td>
<td>20.2</td>
<td>0.0</td>
<td>0.8</td>
<td>20.2</td>
<td>1.1</td>
<td>74.2</td>
<td>-62.0</td>
<td>-20.0</td>
<td>13.5</td>
<td>55.3</td>
</tr>
<tr>
<td>Dense Plastic Combined</td>
<td>41.2</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>10.9</td>
<td>22.3</td>
<td>0.9</td>
<td>29.3</td>
<td>-59.3</td>
<td>8.7</td>
<td>-29.1</td>
<td>39.0</td>
</tr>
<tr>
<td>Plastic Film Baseline</td>
<td>39.8</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>3.2</td>
<td>34.0</td>
<td>0.6</td>
<td>9.7</td>
<td>-15.7</td>
<td>3.5</td>
<td>-5.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Plastic Film High Resource</td>
<td>39.8</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>11.4</td>
<td>27.1</td>
<td>0.8</td>
<td>4.87</td>
<td>-38.1</td>
<td>19.3</td>
<td>-32.4</td>
<td>24.9</td>
</tr>
<tr>
<td>Plastic Film High Energy</td>
<td>38.8</td>
<td>0.00</td>
<td>19.0</td>
<td>0.0</td>
<td>1.7</td>
<td>19.1</td>
<td>1.2</td>
<td>69.62</td>
<td>-60.2</td>
<td>-16.7</td>
<td>10.6</td>
<td>54.1</td>
</tr>
<tr>
<td>Plastic Film Combined</td>
<td>39.8</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
<td>11.5</td>
<td>21.1</td>
<td>1.0</td>
<td>26.5</td>
<td>-55.8</td>
<td>13.0</td>
<td>-28.3</td>
<td>40.5</td>
</tr>
<tr>
<td>Ferrous Metals Baseline</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>-50.0</td>
<td>-34.9</td>
<td>-48.6</td>
<td>-33.5</td>
</tr>
<tr>
<td>Ferrous Metals High Resource</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>-60.6</td>
<td>-42.3</td>
<td>-59.0</td>
<td>-40.7</td>
</tr>
<tr>
<td>Non-Ferrous Baseline</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>-452.1</td>
<td>-424.5</td>
<td>-451.4</td>
<td>-423.8</td>
</tr>
<tr>
<td>Non-Ferrous High Resource</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>-497.9</td>
<td>-467.5</td>
<td>-497.2</td>
<td>-466.7</td>
</tr>
<tr>
<td>Soils Baseline</td>
<td>95.9</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>94.3</td>
<td>17.5</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>17.4</td>
<td>17.5</td>
</tr>
<tr>
<td>Soils High Resource</td>
<td>95.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.3</td>
<td>57.6</td>
<td>19.4</td>
<td>0.0</td>
<td>-1.3</td>
<td>1.2</td>
<td>18.2</td>
<td>20.6</td>
</tr>
<tr>
<td>Soils (mining, quarrying, dredging) Baseline</td>
<td>113.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>113.4</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Minerals Baseline</td>
<td>113.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>81.9</td>
<td>31.3</td>
<td>25.1</td>
<td>0.1</td>
<td>-2.9</td>
<td>2.4</td>
<td>22.3</td>
<td>27.6</td>
</tr>
<tr>
<td>Minerals High Resource</td>
<td>113.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>84.6</td>
<td>28.6</td>
<td>25.2</td>
<td>0.0</td>
<td>-2.9</td>
<td>2.5</td>
<td>22.4</td>
<td>27.8</td>
</tr>
<tr>
<td>Minerals (mining, quarrying, dredging) Baseline</td>
<td>113.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>112.6</td>
<td>4.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Misc. Combustibles Baseline</td>
<td>131.9</td>
<td>62.8</td>
<td>9.9</td>
<td>1.7</td>
<td>37.3</td>
<td>20.1</td>
<td>4.5</td>
<td>89.5</td>
<td>-47.0</td>
<td>-22.9</td>
<td>47.0</td>
<td>71.2</td>
</tr>
</tbody>
</table>
C1.1 PAPER AND CARD

Figure C1.1 Baseline Scenario

Carbon Balance (mt Carbon)
100 year time frame

C as CO₂ (biogenic) C as CO₂ (fossil) C as CH₄

57.7 0.0 4.8

GHG from fraction (mt CO₂-eq)
140.0

Avoided GHG (mt CO₂-eq)
Max 127.3 Min 68.4

Ancillary GHG (mt CO₂-eq)
4.6

118.0 C in waste 47.2 C in products

8.5 C remaining in fraction

Net GHG Emissions
Min impact 17.2 mt CO₂ eq
Max impact 76.1 mt CO₂ eq

Figure C1.2 High Resource Recovery Scenario

Carbon Balance (mt Carbon)
100 year time frame

C as CO₂ (biogenic) C as CO₂ (fossil) C as CH₄

42.1 0.0 3.6

GHG from fraction (mt CO₂-eq)
110.08

Avoided GHG (mt CO₂-eq)
Max 150.8 Min 77.5

Ancillary GHG (mt CO₂-eq)
5.0

118.0 C in waste 64.5 C in products

7.8 C remaining in fraction

Net GHG Emissions
Min impact 35.7 mt CO₂ eq
Max impact 37.6 mt CO₂ eq
Figure C1.3 High Energy Recovery Scenario

<table>
<thead>
<tr>
<th>C as CO2 (biogenic)</th>
<th>C as CO2 (fossil)</th>
<th>C as CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.3</td>
<td>0.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Carbon Balance (mt Carbon)
100 year time frame

- GHG from fraction (mt CO2-eq) 83.6
- Ancillary GHG (mt CO2-eq) 6.1
- C in waste 118.0
- C in products 24.1
- C remaining in fraction 5.9

Net GHG Emissions
Min impact -98.1 mt CO2 eq
Max impact 8.3 mt CO2 eq

Figure C1.4 Combined Scenario

<table>
<thead>
<tr>
<th>C as CO2 (biogenic)</th>
<th>C as CO2 (fossil)</th>
<th>C as CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.7</td>
<td>0.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Carbon Balance (mt Carbon)
100 year time frame

- GHG from fraction (mt CO2-eq) 103.7
- Ancillary GHG (mt CO2-eq) 5.2
- C in waste 118.0
- C in products 84.6
- C remaining in fraction 7.3

Net GHG Emissions
Min impact -155.0 mt CO2 eq
Max impact -78.5 mt CO2 eq
C1.2 KITCHEN/FOOD WASTE

Figure C1.5 Baseline Scenario

Figure C1.6 High Resource Recovery Scenario
Figure C1.7 High Energy Recovery Scenario

![High Energy Recovery Scenario Diagram](image)

Figure C1.8 Combined Scenario

![Combined Scenario Diagram](image)
C1.3 GREEN WASTE

Figure C1.9 Baseline Scenario

![Baseline Scenario Diagram]

Figure C1.10 High Resource Recovery Scenario

![High Resource Recovery Scenario Diagram]
Figure C1.11 High Energy Recovery Scenario

Carbon Balance (mt Carbon)
100 year time frame

C as CO₂ (biogenic) C as CO₂ (fossil) C as CH₄

33.1 0.0 0.5

GHG from fraction (mt CO₂-eq) 17.42
Avoided GHG (mt CO₂-eq)
Max 47.6 Min 24.0

Ancillary GHG (mt CO₂-eq) 6.1

49.2 C in waste

12.7 C in products

C remaining in fraction 2.9

Figure C1.12 Baseline Scenario

Carbon Balance (mt Carbon)
100 year time frame

C as CO₂ (biogenic) C as CO₂ (fossil) C as CH₄

21.5 0.0 0.0

GHG from fraction (mt CO₂-eq) 0.0
Avoided GHG (mt CO₂-eq)
Max 4.7 Min -1.4

Ancillary GHG (mt CO₂-eq) 0.8

22.0 C in waste

0.0 C in products

0.5 C remaining in fraction

Net GHG Emissions
Min impact -3.9 mt CO₂ eq
Max impact 0.7 mt CO₂ eq

C1.4 AGRICULTURAL CROP WASTE
Figure C1.13 High Resource Recovery Scenario

Figure C1.14 High Energy Recovery Scenario
Figure C1.15 Baseline Scenario

![Diagram of Baseline Scenario]

- **Carbon Balance (mt Carbon)**
 - 100 year time frame
 - C as CO₂ (biogenic): 379.1
 - C as CO₂ (fossil): 0.0
 - C as CH₄: 0.0

- **Ancillary GHG**
 - (mt CO₂-eq): 8.3

- **Net GHG Emissions**
 - Min impact: 8.8 mt CO₂-eq
 - Max impact: 5.2 mt CO₂-eq

- **C in waste**: 388.6

- **C in products**: 0.2

- **C remaining in fraction**: 9.4

Figure C1.16 High Resource Recovery Scenario

![Diagram of High Resource Recovery Scenario]

- **Carbon Balance (mt Carbon)**
 - 100 year time frame
 - C as CO₂ (biogenic): 333.2
 - C as CO₂ (fossil): 0.0
 - C as CH₄: 0.0

- **Ancillary GHG**
 - (mt CO₂-eq): 16.3

- **Net GHG Emissions**
 - Min impact: 3.5 mt CO₂-eq
 - Max impact: 15.7 mt CO₂-eq

- **C in waste**: 388.6

- **C in products**: 48.4

- **C remaining in fraction**: 7.0
Figure C1.17 High Energy Recovery Scenario

![Diagram showing carbon balance in a high energy recovery scenario](image)

- Carbon Balance (mt Carbon) 100 year time frame
- C as CO2 (biogenic): 333.0
- C as CO2 (fossil): 0.0
- C as CH4: 0.0
- GHG from fraction (mt CO2-eq): 2.2
- Ancillary GHG (mt CO2-eq): 22.7
- Avoided GHG (mt CO2-eq): Max -191.3, Min -84.6
- C in waste: 388.6
- C in products: 48.6
- Net GHG Emissions:
 - Min impact: -106.3 mt CO2 eq
 - Max impact: -59.6 mt CO2 eq
- C remaining in fraction: 7.0

C1.6 ‘OTHER ORGANICS’

Figure C1.18 Baseline Scenario

![Diagram showing carbon balance in a baseline scenario](image)

- Carbon Balance (mt Carbon) 100 year time frame
- C as CO2 (biogenic): 26.1
- C as CO2 (fossil): 0.0
- C as CH4: 0.1
- GHG from fraction (mt CO2-eq): 2.6
- Ancillary GHG (mt CO2-eq): 1.7
- Avoided GHG (mt CO2-eq): Max -7.9, Min -3.0
- C in waste: 28.6
- C in products: 1.7
- Net GHG Emissions:
 - Min impact: -3.6 mt CO2 eq
 - Max impact: 1.2 mt CO2 eq
- C remaining in fraction: 0.7
Figure C1.19 High Resource Recovery Scenario

Carbon Balance (mt Carbon)
100 year time frame

- C as CO₂ (biogenic): 23.1
- C as CO₂ (fossil): 0.0
- C as CH₄: 0.1
- GHG from fraction (mt CO₂-eq): 3.0
- Avoided GHG (mt CO₂-eq): Max Min
 - 4.5 -1.9

C in waste: 28.6
C in products: 4.8
C remaining in fraction: 0.7

Figure C1.20 High Energy Recovery Scenario

Carbon Balance (mt Carbon)
100 year time frame

- C as CO₂ (biogenic): 25.5
- C as CO₂ (fossil): 0.0
- C as CH₄: 0.1
- GHG from fraction (mt CO₂-eq): 2.8
- Avoided GHG (mt CO₂-eq): Max Min
 - 29.3 -10.7

C in waste: 28.6
C in products: 1.5
C remaining in fraction: 0.5

Net GHG Emissions
- Min impact: 0.5 mt CO₂-eq
- Max impact: 3.1 mt CO₂-eq

Net GHG Emissions
- Min impact: -24.5 mt CO₂-eq
- Max impact: -5.9 mt CO₂-eq
Figure C1.21 Combined Scenario

![Combined Scenario Diagram]

Figure C1.22 Baseline Scenario

![Baseline Scenario Diagram]
Figure C1.23 High Resource Recovery Scenario

Figure C1.24 High Energy Recovery Scenario
C1.8 TEXTILES

Figure C1.26 Baseline Scenario
Figure C1.27 High Resource Recovery Scenario

Figure C1.28 High Energy Recovery Scenario
Figure C1.29 Combined Scenario

Figure C1.30 Baseline Scenario
Figure C1.31 High Resource Recovery Scenario

Figure C1.32 High Energy Recovery Scenario
Figure C1.33 Combined Scenario

![Diagram](Image)

C1.10 PLASTIC (FILM)

Figure C1.34 Baseline Scenario

![Diagram](Image)
Figure C1.35 High Resource Recovery Scenario

Figure C1.36 High Energy Recovery Scenario
C1.11 FERROUS METALS

Figure C1.38 Baseline Scenario
Figure C1.39 High Resource Recovery Scenario

Figure C1.40 Baseline Scenario
C1.13 **SOILS**

Figure C1.41 High Resource Recovery Scenario

![Diagram of Carbon Balance (mt Carbon) 100 year time frame showing C as CO2 (biogenic), C as CO2 (fossil), C as CH4, GHG from fraction (mt CO2-eq), Avoided GHG (mt CO2-eq), Net GHG Emissions (Min impact, Max impact), C in waste, C in products, C remaining in fraction.]

Figure C1.42 Baseline Scenario

![Diagram of Carbon Balance (mt Carbon) 100 year time frame showing C as CO2 (biogenic), C as CO2 (fossil), C as CH4, GHG from fraction (mt CO2-eq), Avoided GHG (mt CO2-eq), Net GHG Emissions (Min impact, Max impact), C in waste (fossil), C in products, C remaining in fraction.]

C1.14 *SOILS (MINING, QUARRYING, MARINE DERIVED)*

Figure C1.44 Baseline Scenario
Figure C1.45 Baseline Scenario

Figure C1.46 High Resource Recovery Scenario