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EXECUTIVE SUMMARY 
 
This work has shown how Sustainable Intensification (SI) can be assessed through efficiency and productivity 

measures that are augmented with positive and negative environmental externalities. These provide a better 

assessment of the performance of farms in relation to the broader objectives of agricultural policy than can 

be achieved with conventional measures.  

We applied Data Envelopment Analysis (DEA) using data for cereal farms in the Farm Business Survey (FBS) as 

well as data collected through the survey of study area commercial farms undertaken in Work Package 1.2A. 

A number  of measures were developed to account for environmental aspects related to agricultural production: 

a) sustainable efficiency, a SI measure that combines the production of conventional output, pollution and 

environmental goods associated with the conventional production by farms; b)  environmental inefficiency, a 

SI measure that assesses the overuse of nitrogen fertiliser compared to a pollution-minimising benchmark; and 

c) sustainable productivity, a measure of productivity that incorporates information on sustainable efficiency to 

provide a dynamic picture of SI. 

We found that incorporating positive and negative environmental externalities in the production technology of 

the industry (i.e. the production frontier used to define the relationship between inputs and outputs) showed a 

different picture of how efficient farms are on average compared to standard approaches. In fact, this resulted 

in lower overall sustainable efficiency scores1. The different DEA conducted showed that the FBS cereal farms 

had an average sustainable efficiency of 0.69 and 0.59 in 2012 and 2013, respectively, and that in 2012 on 

average 53 kg of nitrogen per hectare was overused compared to the pollution-minimising benchmark. These 

figures suggest that the cereal farms were below their potential sustainable performance. On average, the cereal 

farms produced around 70% of the output and environmental goods that were produced by the best performing 

cereal farms, given the inputs used and their negative impacts on the environment. Our productivity analysis 

applied to the FBS cereal farms suggests that there was a decline (0.93) in sustainable productivity between 

2012 and 2013 due to a decline in efficiency (0.88), which was partly offset by an increase in technical change 

(1.11)2. This means that the FBS cereal farms producing the maximum potential output given their inputs (i.e. 

farms on the production frontier3) increased their performance with regard to SI (i.e. sustainable productivity), 

but that the inefficient farms did not manage to keep up with the frontier farms, and declined in terms of SI.  

We also attempted to contextualise the differences in sustainable efficiency for the FBS cereal farms. We found 

that sustainable efficiency is positively associated with farm size, and that cereal farms in Less Favoured 

Areas and on upland soils had a lower SI efficiency. Caution is required in interpreting the latter result because 

the number of farms surveyed in these areas was small (n = 43) and the sample was very heterogeneous, 

consisting of mixed as well as specialised farms. When we extended our analysis to include additional measures 

of sustainability using data from the farms in the Work Package 1.2A survey we found an average sustainable 

efficiency of 0.64. Whilst this figure is not directly comparable to the figures from the FBS farms, as different 

                                                           
1 Sustainable efficiency scores are based on efficiency measures that can take any value in the range [0,1] 
2 The productivity analysis conducted yields results on productivity change. Values of productivity change greater than 1 
indicate an increase in productivity; values smaller than 1 indicate a decrease in productivity; values equal to 1 indicate 
no productivity change. 
3 Production frontier reflects the current state of technology in the industry and represents the maximum output 
attainable from each input level (Coelli et al., 2005). The production frontier can be used to identify technically efficient 
farms, i.e. those on the frontier, and inefficient farms, i.e. those below the frontier (Coelli et al., 2005).  
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sustainable indicators were used, the fact that including additional measures of sustainability reduced measured 

efficiency suggests that there is considerable scope for improvements to be made in SI. 

Furthermore, we reviewed the literature on shadow-pricing of positive and negative environmental externalities 

(i.e. calculating the opportunity cost of increasing (decreasing) the positive (negative) environmental externality 

by one unit). The key message from this review was that shadow-pricing externalities critically depends on how 

the externality is represented in the production economics framework. While the literature has largely treated 

environmental goods as conventional outputs in a production economics framework, we have shown that this 

approach has limitations. Addressing the problems of computing the shadow-price of crop diversification, we 

developed a new measure and found that crop diversification was positively associated with an increase in 

long-term profit. This is in contrast with other studies, which assume that there always is a trade-off between 

conventional production and the production of environmental goods, but it accords with conventional 

wisdom, which holds that crop diversification yields benefits to farms. 

This report shows that the efficiency and productivity framework is flexible in that it can easily be enriched with 

more and better data on the positive and negative environmental externalities. Our main recommendation 

is that methods of incorporating more data within the framework supported by the FBS should be explored. In 

particular, it is critical that we are able to connect data on soil quality and biodiversity to the data that focus 

on more conventional measures of business performance in the FBS. Improved measures of soil quality would 

substantially improve the measurement of SI. We believe it is worthwhile to create a more detailed account 

of the spatial characteristics of environmental externalities. In addition, future studies would benefit from 

spatially specific nutrient coefficients that reflect the differences in cost of nutrient leaching. This would 

increase the ability of analysts to accurately identify farms with scope to improve their SI, and also to identify 

drivers of SI, which is crucial information for policy makers.  
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1. INTRODUCTION 

1.1 Overview of Objective 1.1 

In Objective 1.1 we sought to review current methodologies for assessing the environmental and social 

performance of farm businesses and to identify suitable indicators for further development into an integrated 

sustainable intensification methodology (ISIM) that was ‘rooted in standard economic theories of production 

and the environment’. This would be replicable and open to refinement as new data became available. From 

an initial literature review, which was reported in the SIP Project 1 Scoping Study (Knight et al. 2014), we 

identified a range of suitable indicators for use with a core dataset provided by the Farm Business Survey 

(FBS) for England and Wales. The FBS is part of the European Farm Accountancy Data Network (FADN) and 

thus the methods that we employ can be extended to other European countries and projects. The ISIM has 

two integrated ‘Strands’ that both use FBS data; by using two approaches, we overcome some of the limitations 

of each individual approach. 

1.1.1 Strand 1 (Work Package 1.1A) 

Strand 1 (described in full in the Work Package 1.1A final report) used a sub-set of FBS data for 2012, together 

with a suite of mechanistic environmental models to generate economic, social and environmental indicators 

for individual FBS farms. 

1.1.2 Strand 2 (Work Package 1.1B) 

Strand 2 used the full FBS data-set for 2012 and 2013 (including the Strand 1 sub-set data) to generate farm 

level efficiency indicators for different farm types within the FBS. These indicators show the position of each 

farm relative to a ‘frontier’ representing the best performing farms under current technological conditions 

(e.g. on cereal farms, with current varieties of cereals). We calculate the efficiency of farms in relation to 

conventional inputs (land, labour and capital) and outputs (agricultural production), and also positive 

environmental externalities (or ‘environmental goods’, using the Shannon index for crop diversity as an indicator) 

and negative environmental externalities (using nitrogen and phosphorus surplus as an indicator). 

By incorporating positive and negative environmental externalities into the efficiency analysis we obtain farm 

efficiency levels that can be interpreted as Sustainable Intensification (SI) metrics for the farm (i.e. accounting 

not only for conventional inputs and outputs but also for environmental goods and negative environmental 

externalities associated with the production of conventional outputs). Examples of such an extension of the 

efficiency analysis by incorporating non-conventional outputs are the extent of wetland and interior forest 

(Macpherson, Principe and Smith 2010), six key indicators of biotic integrity of watershed data (Bellenger and 

Herlihy 2009, Bellenger and Herlihy 2010), the extent of permanent grassland (Areal, Tiffin and Balcombe 

2012), cultural services, biodiversity, carbon sequestration and the extent of arable and grassland (Ruijs et al. 

2015, Ruijs et al. 2013), the Shannon index for crop diversity (Sipiläinen and Huhtala 2013) and wetland 

quality (Bostian and Herlihy 2014). 

A key aspect of SI is to farm in ways that ensure that ‘natural’ features that can contribute to productivity, such 

as soil quality, are enhanced. We therefore extend the efficiency framework by incorporating these features 

through the use of indicators such as the Shannon index for crop diversity. We have also considered ways in 

which measurement of SI can be extended to capture the social dimension of sustainability. The framework 

that we have presented to incorporate the environmental dimension is based on a conceptualisation of the 

processes that link the natural and managed ecosystems. This approach is less suited to the social dimension 
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where the processes are less clear. We have therefore used social indicators to provide context for the 

differences in efficiency scores.  

To give an indication of the flexibility of our approach, and to show how it might be extended, we applied 

our efficiency methods to the data collected from the survey of study area commercial farms undertaken in 

Work Package 1.2A. This shows that more detailed data on positive and negative environmental externalities 

can easily be incorporated in our efficiency and productivity measures. 

Finally, we reviewed the literature on shadow-pricing environmental goods and negative environmental 

externalities (i.e. calculating the opportunity cost of increasing the environmental good or decreasing the 

negative environmental externality by one unit) and developed a novel measure to assess the opportunity 

cost of crop diversification. 

 

1.2 Aim and Objectives 

The overall aim of Objective 1.1 was to develop improved indicators and standardised methodologies for 

land managers and their advisers to measure the economic, environmental and social performance of farms. 

The main objective of Work Package 1.1B (covered by this report) was to develop augmented efficiency and 

productivity measures to form a basis for integrated SI metrics. 

 

1.3 Deliverables and Tasks 

The key deliverables for Work Package 1.1B were integrated SI metrics that can be used on-farm to assess 

how well a farming system is delivering economic, environmental and social outcomes, and where there is 

opportunity to improve. The key tasks undertaken were to: 

1.1B1 Conduct an augmented efficiency analysis of FBS farms 

1.1B2 Develop a prototype 'environmental efficiency' tool 

1.1B3 Analyse factors contributing to good SI performance 

1.1B4 Compare results with the commercial farm survey from Work Package 1.2A  

1.1B5 Extend Total Factor Productivity to include non-conventional in/outputs  

1.1B6 Review methods for incorporating shadow values 
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2. GENERAL METHODOLOGY 

2.1 Data Envelopment Analysis 

We use ‘Data Envelopment Analysis’ (DEA) to compute efficiency and productivity measures for cereal farms 

in the FBS. This method imposes minimal restrictions on the production technology that is assumed to transform 

inputs into outputs, environmental goods and negative environmental externalities. The method constructs a 

frontier to represent the performance of the most efficient farms in the data set and compares the performance 

of other farms to this. A number  of measures have been developed to account for environmental aspects 

related to agricultural production: a) sustainable efficiency, an SI measure that combines the production of 

conventional output, pollution and environmental goods associated with the conventional production by 

farms; b)  environmental inefficiency, an SI measure that assesses the overuse of nitrogen compared to a 

pollution-minimising benchmark; and c) sustainable productivity, a measure of productivity that incorporates 

the information on sustainable efficiency to provide a dynamic picture of SI. One disadvantage is that all 

deviations from the technological frontier are explained as farm inefficiency. Alternatively, one could employ 

Stochastic Frontier Analysis (SFA), which allows for disentangling deviations from the frontier into components 

of technical inefficiency and random noise. This comes at the price of more restrictive assumptions regarding 

the production technology. The DEA method is further explained in the appendices of each section concerned.  

2.2 Farm Business Survey Data 
The Farm Business Survey (FBS) provides the basis of our work. The FBS dataset provides statistically 

representative, farm-level information on economic and physical characteristics. The FBS dataset is especially 

rich in terms of economic data (economic values of inputs and outputs), as it was not originally designed to 

record environmental factors. Since 2012-2013, fertiliser surveys were conducted as part of the FBS which 

record the fertiliser applied to a crop. By comparing this data with the theoretical nitrogen (N) and phosphorus (P) 

requirements of the crop, nutrient surpluses can be calculated. We regard surpluses as a negative environmental 

externality as their increase has a detrimental effect for society through their impacts on water quality for 

example.4 Data on environmental goods such as biodiversity are harder to obtain, although more details will 

be soon available in the light of the greening of the CAP (e.g. buffer strips and hedgerows). We have made 

use of the Shannon index for crop diversity as a proxy of biodiversity. 

Data are taken from the FBS dataset for 2012 and 2013. To obtain a homogenous sample, we consider cereal 

farms that do not produce any livestock, but note that our method can also be used for livestock farms if more 

details on the nutrient contents of the feed inputs are available. The farms are geographically spread throughout 

England and Wales. All size classes are represented. We only include the farms that completed the fertiliser 

survey. 

Table 1 lists the variables that we use in the model. Most variables are expressed as (deflated) expenditures 

in £. The number of farms varies according to the analysis that we perform and details are therefore given in 

the relevant section of the report. 

  

                                                           
4 It is possible that a negative ‘surplus’ may arise in which case the farmer is depleting the natural stock of the nutrient. 
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Table 1: Variables used in the analysis 

 

Variables Directly 
from FBS? 

Units 

Conventional Outputs   
Wheat Yes £ 
Barley Yes £ 
Oats Yes £ 
Beans Yes £ 
Peas Yes £ 
Potatoes Yes £ 
Sugar beets Yes £ 
Other Yes £ 
Conventional variable inputs   
Land Yes Hectares 
Variable inputs Yes £ 
Seed and planting stock Yes £ 
Fertiliser Yes £ 
Crop protection Yes £ 
Electricity  Yes £ 
Heating fuel Yes £ 
External labour Yes Annual working hours 
Management Yes Annual working hours 
Other variable inputs Yes £ 
Conventional capital inputs   
Buildings Yes £ 
Machinery Yes £ 
Negative Environmental Externalities   
Nitrogen surplus No Kg 
Phosphorus surplus No Kg 
Environmental goods   
Shannon index for crop diversity No Unitless 

 

The nitrogen (N) and phosphorus (P) surplus and the Shannon index of crop diversity are derived from the 

information obtained from the FBS dataset. 

The nitrogen and phosphorus surplus are calculated as follows. Consider a firm that transforms a vector of 

𝑚 = 1…𝑀 variable inputs, 𝑥 ∈ ℝ+
𝑀 to a vector of 𝑛 = 1…𝑁 outputs, 𝑦 ∈ ℝ+

𝑁. We assume that inputs and 

outputs have a fixed proportionate content of the single polluting nutrient given by the (𝑀 × 1) and (𝑁 × 1) 

vectors of non-negative pollutant coefficients 𝑎 and 𝑏. The nitrogen and phosphorus surpluses are calculated 

as the difference between the levels of the pollutant in the outputs and inputs given by the material balance 

equation: 

𝑧(𝑎, 𝑏) = 𝑎′𝑥 − 𝑏′𝑦. 

The nutrient coefficients for both inputs, 𝑎, and outputs, 𝑏, are obtained from the EUROSTAT (2015) 

website. Results obtained using these coefficients are consistent with the UK coefficients used in the soil 

surface method. 
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Crop diversity has been shown to be linked with inter alia long-term stability of the carbon stock in the soil 

(Henry et al. 2009), improved nutrient balance (Pimentel et al. 2005) and landscape diversity (Westbury et 

al. 2011). The Shannon index for crop diversity 𝑆(𝐿𝑚) is computed as follows: 

𝑆(𝐿𝑚) = − ∑ [
𝐿𝑚

𝐿
∗ ln

𝐿𝑚

𝐿
]

𝑀

𝑚=1

 

where 𝐿𝑚 is the area of land allocated to growing the 𝑚-th crop and 𝐿 is total land area. The index increases 

with the number of species and as they are present in increasingly equal proportions. For instance, if the farms 

in the sample produce seven crops, a farm maximizes its Shannon index by producing seven crops evenly on 

the land. It is a well-established measure with many applications focusing on the farm level (Spellerberg and 

Fedor 2003). In the context of crop production, it measures the crop diversity by representing the number of 

crop types and evenness of the area covered by the crops. Various studies in the economics literature use the 

Shannon index for crop diversity as an environmental good (e.g., Di Falco and Chavas 2008, Sipiläinen and 

Huhtala 2013, Weitzman 2000). Despite these appealing characteristics, we note that crop diversity is a 

contested measure of environmental goods (it is only one element of biodiversity). We made our choice 

because of the constraints imposed by the use of the FBS. The measure we present demonstrates the 

potential to extend efficiency measurement to capture environmental goods. As better measures of these 

outputs become available, they can be used to replace the Shannon index. 

  



11 
 

3. METHODS, RESULTS AND DISCUSSION 

3.1 Sustainable Efficiency 

We develop an augmented efficiency measure which rewards conventional production and crop diversity 

(measured by the Shannon index), and penalises fertiliser N and P surpluses (Appendix 1). The measure is 

expressed as a number between 0 and 1, where 1 denotes maximum sustainable efficiency. For example, an 

augmented efficiency score of 0.80 means that the farm operates at 80% of its potential in simultaneously 

increasing production of conventional goods and the Shannon index for crop diversity, and reducing N and P 

surplus. 

In line with Murty, Russell and Levkoff (2012), we make use of network Data Envelopment Analysis (DEA) 

for a balanced sample of 93 specialised cereal farms for the years 2012 and 2013. We use an intersection of 

the conventional technology (with conventional inputs and outputs), polluting technology (which generates 

N and P surplus), and environmental-good-generating technology (which generates the Shannon index for 

crop diversity) to compute overall environmental efficiency (Appendix 2). In practice, this means that we 

compute three partial efficiency scores (one for each sub-technology) and that we compute the mean of the 

three partial efficiency scores to obtain the eventual sustainable efficiency score. 

Two key features of the approach that we adopt are as follows. First, we quantify pollution rigorously by 

deriving the N and P surplus so that it is consistent with the material balance condition. Second, we recognise 

that it is the change in natural capital stock that is the relevant outcome variable when assessing SI. Thus we 

treat the Shannon index for crop diversity as a conventional output for the current year, and as an input for the 

subsequent year. The latter is in line with the concept of a natural capital stock yielding ecosystem services. 

Ecosystem services are yielded simultaneously with conventional production, and part of the natural capital 

stock can be carried over as inputs for future production. 

Table 2 shows that the average sustainable efficiency scores are 0.69 and 0.59 for 2012 and 2013, respectively.  

Table 2: Sustainable efficiency scores 

Year  Min. 1st Qu. Median Mean 3rd Qu. Max. 

2012 0.44 0.60 0.68 0.69 0.78 1 

2013 0.31 0.51 0.57 0.59 0.67 1 

 
Figure 1 shows a plot of the probability density function for the two years. It shows that the reduction in the 

mean score is broadly the consequence of a leftward shift in the distribution. It is apparent also that some 

farms towards the high end of the distribution are less affected by the shift than is generally the case. Overall, 

2011/12 was a wet year in comparison to 2012/13 but the conditions in winter 2012/13 were particularly 

wet, which meant that the area of winter sown crops was lower than normal in that year. 
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Figure 1: Probability density function for Overall Sustainable Efficiency (2012-2013) 

 
The change in overall sustainable efficiency can be decomposed into changes in efficiency for  the conventional 

technology (Figure 2), technology for the production of nutrient surplus (Figure 3) and technology for the 

‘production’ of the Shannon index (Figure 4). Figures 2 and 3 show that in relation to conventional technologies 

and nutrient surplus a comparatively large number of farms are on the frontier. Regarding the conventional 

technology, the distribution shifts leftwards between 2012 and 2013. It is also evident that there is a collection 

of farms that are relatively close the frontier and with efficiencies greater than 90%. There is a second group 

that have efficiencies close to 80% with an extended tail of farms with efficiencies below this. In 2013 the second 

group is more affected by the reduction in efficiency. A possible explanation may be that these were farms that 

are located on heavier soils that are difficult to manage in the autumn/winter. This would make them appear less 

efficient in all years and more severely affected when conditions are particularly wet as they were in 2012/13. 

However, since we lack information about the specific farm locations we cannot confirm this is the case. 

 

Figure 2: Efficiency of conventional technology 
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Figure 3 shows that the nutrient surplus generating technology also has relatively large numbers of farms on 

the frontier. There are again two groups, one with very high levels of efficiency and another with levels around 

50%. In contrast with the conventional technology, the reduction in efficiency largely affects farms that are 

close to the frontier. This suggests that the challenging conditions in winter 2012/13 affected those farms 

that had relatively low levels of nutrient wastage given the levels at which they are being applied. This may 

be a consequence of those farms that are normally very good at timing fertiliser application to coincide with 

key growth stages being forced to apply fertiliser at sub-optimal times as a result of the poor weather. Or 

the farms may have over-estimated their fertiliser requirement, either because they under-estimated the 

supply from the soil or because they over-estimated crop requirement. 

 

 

Figure 3: Efficiency of technology that generates negative environmental externalities (N and P surplus) 

 
Figure 4 shows a somewhat different picture for the Shannon index technology. There are only a very small 

number of farms on the frontier with the bulk of the population having efficiency levels of below 50%. The 

most efficient farms according to this measure achieve a high level of crop diversity given the input levels 

that they are using and the crop diversity of the previous year. The highly efficient farms may therefore just be 

those where there is a change in the crop rotation in the years for which the analysis is conducted. 
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Figure 4: Efficiency of technology that generates and uses environmental goods (Shannon index) 

3.2 Environmental inefficiency 

In line with Coelli, Lauwers and Van Huylenbroeck (2007), we develop an environmental inefficiency measure 

that indicates the overuse of N compared to a pollution-minimising benchmark. Environmental inefficiency is 

expressed in terms of kg N overuse per hectare. The technological frontier is defined in input-output space. 

Thus a firm that is on the frontier is unable to produce a higher yield than they currently do, given the level 

of N use. Such a farm may however not be on a pollution-minimising point of the frontier (i.e. an efficient 

farm could remain efficient but minimise pollution). There are many combinations of inputs and outputs that 

lead to efficient outcomes. However, only one of those outcomes can be pollution-minimising. This gives rise 

to two components of an efficiency score, the first measuring distance off the frontier and the second 

measuring distance from the pollution minimising point. Because of the analogy with profit maximisation, 

we term these sources of inefficiency (technical and allocative respectively). 

A full version of this work is being prepared for submission to the European Journal of Operational Research. 

Appendix 2 provides a technical explanation of the method. 

We found that for our sample of 115 cereal farms, environmental inefficiency is on average 53 kg N per hectare 

ranging from 0 to 174 kg N per hectare for the year 2012. This measures the amount by which N surplus can 

be reduced by adopting the technology and nitrogen-yield ratio of the environmentally efficient farm. Figure 

5 shows the histogram for the number of farms achieving varying levels of environmental inefficiency. It also 

shows the number of farms where this is due to technical inefficiency in the sense that they are inside the 

frontier, and allocative inefficiency where the firms are on the frontier but not at the pollution-minimising 

point. 78 farms are technically inefficient and 35 farms are allocatively inefficient. The remaining 2 farms are 

on the frontier and minimise pollution5. 

                                                           
5 Note that they are not on the same spot. This is possible as the nutrient coefficients of the seeds are different per 
farm and land is assumed to be a fixed factor. 
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Figure 5: Environmental inefficiency, technical inefficiency and allocative inefficiency. 
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3.3 Sustainable productivity growth 

Our sustainable efficiency measure assesses sustainable performance across farms within a given year. However, 

the term ‘Sustainable Intensification’ suggests that one also needs to assess how sustainable performance 

dynamically changes over time. Building on the static efficiency framework developed in section 3.1, we introduce 

a dynamic, sustainable productivity measure that assesses SI6. The framework is based on the Malmquist 

productivity index (Caves, Christensen and Diewert 1982). It uses the same distance function framework as 

in section 3.1 i.e. an intersection of the conventional technology (with conventional inputs and outputs), 

polluting technology (which generates N and P surplus), and environmental-good-generating technology 

(which generates the Shannon index for crop diversity to compute overall environmental efficiency). However, 

it also compares observations of the current year with the technology of the subsequent year and vice versa.  

The sustainable productivity measure has a straightforward interpretation. Sustainable productivity growth 

(decline) yields a number higher (lower) than one. This measures how the farmers’ ability to simultaneously 

deal with conventional production and production of negative environmental externalities and environmental 

goods changes over time. The measure can be decomposed into efficiency changes and technical changes. The 

latter indicates shifts of the technological sustainability frontier. Growth in a component is indicated by a 

number higher than one, and decline by a number lower than one. 

A full version of this work is being prepared for submission to Ecological Economics. Appendix 3 provides a 

technical explanation of the method. 

Table 3 and Figure 6 show that there was a sustainable productivity decline (0.93) in 2012-2013 due to a decline 

in efficiency (0.88), which was partly offset by an increase in technical change (1.11). This means that farms 

on the frontier increased their performance with regard to SI, but that the inefficient farms did not manage 

to keep up with the frontier farms and even deteriorated in terms of SI. The decline in sustainable productivity 

can mainly be explained by exceptionally bad weather conditions in 2013, which have an impact on the majority 

of the farms. The sustainable productivity measure thus provides nuance about what happened in terms of 

SI. It shows that the decline in sustainable efficiency is only one part of the story, with frontier farms actually 

improving in terms of SI in spite of the conditions, but most farms unable to keep up with the frontrunners. 

Table 3: Sustainable productivity change, technical change and efficiency change for 2012-2013 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Productivity 
change 

0.79 0.87 0.92 0.93 0.97 1.23 

Technical 
change 

0.64 0.95 1.09 1.11 1.21 1.82 

Efficiency 
change 

0.46 0.78 0.85 0.88 0.97 1.46 

                                                           
6 Although we take into account the intertemporal character of the Shannon index (as it simultaneously serves as an input 
for the next year and as an output for the current year), efficiency measures are in essence still static. They do not 
provide any information on how the technological frontier and technical efficiency have shifted in time. 
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Figure 6: Probability density distribution of sustainable productivity change (MTFP) and its decomposition 

into technical efficiency change (TEC) and technical change (TC) for 2012-2013 
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3.4 Contextualising differences in sustainable efficiency 

In order to contextualise the differences in sustainable efficiency we divided up the results by relevant 

contextual aspects. Table 4 shows the mean sustainable efficiency scores per farm size class, age class of the 

farmer, soil type according to the English Nature soil type qualification, membership of LEAF (Linking Environment 

And Farming) and Less Favoured Area (LFA) status. According to the Wilcoxon signed-rank tests, there are 

some significant differences (at the 10% level) for size class, upland soils and LFAs. The results suggest that 

sustainable efficiency is positively associated with size, and that farms in LFAs and on upland soils have a 

lower sustainable efficiency. It is noted that cereal farming is not typically the main enterprise on upland farms.    

We emphasise that this exercise should be regarded as a rough contextualisation rather than a rigorous 

assessment of the drivers of SI. For many variables, it is difficult to infer a causal connection due to confounding 

factors and/or reverse causality. Moreover, the sample size might be too small to make robust conclusions. 

In this sense, we adhere to the cautious interpretation that correlation does not necessarily imply causation.  

Table 4: Mean and standard deviation (between brackets) of sustainable efficiency for contextual variables. 

CONTEXTUAL VARIABLES   
 

SUSTAINABLE EFFICIENCY  

Size 0-33 percentile 0.62 (0.13) 

 33-67 percentile 0.63 (0.12) 

 67-100 percentile 0.67 (0.15) 

Age 0- percentile 0.65 (0.16) 

 
33-67 percentile 0.64 (0.13) 

 67-100 percentile 0.62 (0.11) 

Soil type Flood Plain Lowland 0.63 (0.12) 

 Upland 0.50 (0.06) 

 Mixed Lowland 0.66 (0.14) 

 Calcareous Lowland 0.64 (0.14) 

 Acidic Lowland 0.64 (0.15) 

LEAF Yes 0.66 (0.14) 

 No 0.64 (0.13) 

LFA Yes 0.53 (0.08) 

 No 0.64 (0.13) 
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3.5 Using our model for collected survey data 

3.5.1 Sustainable efficiency 

A number of environmental indicators can be used in the models developed (i.e. the models are flexible 

enough to make use of different environmental indicators) to obtain the SI measure. In this section we use 

GHG emissions, a different environmental indicator than the ones used in previous sections, areas aimed at 

promoting biodiversity, plus the Shannon index for crop diversity as previously used. 

Using the approach developed in Section 3.1, we compute the sustainable efficiency scores for a number of 

commercial farms within the study areas from survey data collected within Work Package 1.2A (which will be 

reported separately). Essentially, we employ an intersection of the conventional technology (with conventional 

inputs and outputs), polluting technology, and environmental-good-generating technology. We adjust our model 

to the data availability of the new context by using GHG emissions as indicators of negative environmental 

externalities, and the Shannon index for crop diversity and areas aimed at promoting biodiversity as indicators 

for provisioning environmental goods. 

First, as FARMSCOPER allows us to obtain a detailed assessment of the composition of GHG emissions relevant to 

agricultural production, we focus on overall GHG emission by aggregating methane production and nitrous 

oxide by their global warming potential expressed in CO2 equivalents. Feed, agrochemicals, fertilisers and herd 

size are assumed to be the inputs that generate GHG emissions. Second, the Shannon index for crop diversity 

and areas promoting biodiversity (livestock area of non-cropped habitats being managed sympathetically for 

wildlife, rough and lightly grazed grassland, flower-rich habitat area and arable crops on livestock farms) are 

the environmental goods in our model. We treat the environmental goods as ‘weakly disposable’ outputs, 

meaning that these are assumed to be simultaneously inputs for lower levels of the environmental good and 

outputs for higher levels. This is in contrast with our intertemporal model in Section 3.1, which treats the 

environmental good as an input for the production of the subsequent period and as an output for the production 

of the current period. This simplification was unavoidable, as we only have data for one year. On the other 

hand, we believe that the combination of the two environmental goods allows us to represent the positive 

environmental externalities produced by the farms in a more accurate way. Third, the sample includes crop-

only, mixed as well as livestock farms. The final dataset contained 43 farms. 

Table 5 shows the summary statistics of the sustainable efficiency scores for the collected survey data. The 

average sustainable efficiency score is 0.64, which is within the range of the FBS results. 

Table 5: Sustainable efficiency scores for collected survey data 

Year Min. 1st Qu. Median Mean 3rd Qu. Max. 

2015 0.34 0.48 0.65 0.64 0.76 0.97 

 
Figure 7 shows distributions for the overall sustainable efficiency scores and their decomposition into the 

technology of conventional production, GHG emission and environmental goods. As with the FBS results, (partial) 

conventional efficiency is higher than (partial) efficiency with regard to GHG emissions and environmental 

goods. Note, however, that the results are not fully comparable as the farm sample, the year considered and 

the indicator set are all different. 
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Figure 7: Overall sustainable efficiency, conventional efficiency, GHG emission efficiency and environmental 

goods efficiency 
 

3.5.2 Contextualising differences in sustainable efficiency 

Work Package 1.2A also collected data on the farms’ characteristics and IFM/SI practices. The caveat of 

Section 3.4 holds even more as the sample size is smaller and the heterogeneity of the sample is larger: this 

exercise should be seen as a rough contextualisation rather than a rigorous assessment of the drivers of SI. 

Table 7 focuses on the IFM/SI practices implemented. There are no statistical differences between the groups. 

Table 5: Mean and standard deviation (between brackets) of sustainable efficiency for IFM/SI practices7  

IFM/SI PRACTICES ALREADY 
CARRIED OUT 
(N=39) 

WOULD 
CONSIDER 
(N=30) 

WOULD NOT 
CONSIDER 
(N=21) 

N/A 
(N=34) 

TOLERANT VARIETIES 0.63 (0.18) 0.66 (0.19) 0.82 (0.10) 0.61 (0.17) 

REDUCED TILLAGE 0.70 (0.17) 0.63 (0.22) 0.60 (0.24) 0.59 (0.15) 

COVER CROPS 0.60 (0.18) 0.69 (0.17) 0.76 (0.16) 0.61 (0.18) 

NUTRITION 0.60 (0.16) 0.67 (0.21) 0.90 (0.03) 0.74 (0.13) 

RESEED PASTURE 0.63 (0.18) 0.65 (0.13) 0.63 (0.25) 0.73 (0.17) 

PREDICT DISEASE OUTBREAKS 0.65 (0.19) 0.56 (0.18) 0.68 (0.12) 0.65 (0.18) 

PRECISION FARMING 0.68 (0.17) 0.64 (0.21) 0.78 (0.17) 0.55 (0.12) 

ENERGY USE 0.62 (0.20) 0.64 (0.16) 0.71 (0.19) 0.61 (0.07) 

OPIMISE MARGINAL LAND FOR ES 0.64 (0.17) 0.62 (0.24) 0.92 (NA) NA 

TRAINING 0.67 (0.17) 0.70 (0.24) 0.92 (NA) 0.60 (NA) 

                                                           
7 N= sum of the observations per column (N = 39 means that summing up all observations carrying out the IFM/SI 
practices is equal to 39) 
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Table 6 shows the results for perceived involvement (either formally or informally) in cooperation or joint-

working with other farmers as an approximation of social capital. Again, we do not find statistical differences 

between the groups. 

Table 6: Mean and standard deviation (between brackets) of sustainable efficiency for involvement variables 

SOCIAL CAPITAL CURRENTLY 
INVOLVED 
(N=37) 

PREVIOUSLY 
INVOLVED 
(N=13) 

WOULD 
CONSIDER 
(N=17) 

NOT 
INVOLVED 
(N=39) 

DOES NOT 
REGARD AS 
COOPERATION 
(N=5) 

BUYING GROUP 0.70 (0.16) 0.53 (0.14) 0.74 (0.24) 0.61 (0.17) NA 

DISCUSSION GROUP 0.63 (0.17) 0.70 (0.38) 0.66 (0.23) 0.67 (0.16) NA 

PRODUCER ORG. / 
COOPERATIVE 

0.72 (0.14) NA 0.68 (0.18) 0.58 (0.17) 0.97 (NA) 

TRADE UNION 0.63 (0.18) NA 0.71 (NA) 0.69 (0.21) 0.74 (NA) 

COMMONS 0.61 (0.23) 0.69 (NA) NA 0.65 (0.17) NA 

ENVIRONMENTAL 
MANAGEMENT 

0.63 (0.20) NA 0.60 (0.15) 0.64 (0.17) 0.92 (NA) 

CONTRACT LIVESTOCK 0.81 (NA) NA 0.64 (0.20) 0.64 (0.18) NA 

CONTRACT CROPS 0.75 (0.21) 0.73 (0.04) 0.70 (0.37) 0.61 (0.16) 0.64 (0.33) 

S-T KEEP OF LIVESTOCK 0.66 (0.19) 0.39 (NA) 0.55 (0.14) 0.66 (0.17) NA 

SHARE FARMING 0.70 (0.14) 0.73 (0.13) 0.61 (0.28) 0.63 (0.17) NA 

SHARING LABOUR 0.68 (0.18) NA 0.71 (0.28) 0.61 (0.16) NA 

SHARING MACHINERY 0.69 (0.17) 0.78 (0.13) 0.42 (0.02) 0.60 (0.17) NA 

SWAPPING MANURE 0.70 (0.08) NA 0.70 (0.38) 0.64 (0.18) 0.40 (NA) 

 
In the light of the lack of significant differences, we are very cautious to make conclusions about the 

contextual variables of sustainable efficiency. There could be several reasons for these insignificant results. 

The sample size is small for the number of groups. Moreover, in contrast to our analysis focusing on FBS 

cereal farms, the sample is very heterogeneous.8 

  

                                                           
8 We have also conducted a second-stage Ordinary Least Squares regression including farmers’ age, the ratio of subsidies 
to revenues and education. However, the results remain overwhelmingly insignificant. Most likely, the sample is too 
small to find the drivers of sustainable efficiency. 
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3.6 Shadow-pricing environmental goods and negative environmental externalities 

Note: a full version of this is being prepared for submission to Land Economics. Appendix 5 provides a review 

of shadow-pricing of positive and negative environmental externalities, a technical explanation of the method 

and a detailed discussion of the results. 

3.6.1 A technical review 

Understanding firms’ marginal costs and benefits of positive and negative environmental externalities is essential 

for an effective policy intervention. Therefore, we conducted a review of shadow prices of positive and negative 

environmental externalities. The shadow price indicates the opportunity cost of increasing the environmental 

good, or decreasing the negative environmental externality, by one unit. The key message from this review is 

that shadow-pricing of positive and negative environmental externalities critically depends on how the externality 

is implemented in the production economics framework. Only recently, the literature has begun to gain a more 

complete understanding about how negative environmental externalities could be rigorously implemented in 

such a framework to calculate the shadow price. The literature on environmental goods is scarcer and seems 

to make the same mistakes as the original literature on negative environmental externalities: various ad hoc 

assumptions are being made without any theoretical justification. In fact, the ecological literature seems to 

strongly suggest that the current common practice of implementing an environmental good as a conventional 

output within a convex environmental technology set may be too restrictive (Chavas and Di Falco, 2012; Di 

Falco and Chavas, 2009; Ruijs et al., 2013; Ruijs et al., 2015). 

3.6.2 A method to assess the opportunity cost of crop diversification 

We developed a new method to measure the opportunity cost of crop diversification for a balanced sample 

of 44 FBS cereal farms covering 2007-2013. Instead of implementing the environmental good (Shannon index 

for crop diversity) as a conventional output, we only implement conventional inputs and outputs in our 

production economics framework. As such, we refrain from making questionable assumptions about the 

properties of the environmental good. We calculate maximum long-run, ‘dynamic’ profit for the current land 

allocation and for the optimal land allocation. This enables us to express the opportunity cost of crop 

diversification in terms of foregone long-term profit due to misallocation of land use. 

Table 6 shows the computed opportunity costs of the Shannon index for crop diversity. In what follows, we 

express the opportunity cost as the average cost (in constant 2007 £) of increasing the Shannon index by 0.1 

unit per hectare. The average opportunity cost is -£101 for the period, ranging from -£244 (in 2009) to +£34 

(in 2007). Only in the year 2007 was there an average positive opportunity cost, which may be due to the fact 

that it was the last year of ‘set-aside’. Over the whole period, farms are on average ‘willing to pay’ for crop 

diversification. The opportunity costs of (almost) dynamically profit-maximizing farms are on average positive. 

Their average opportunity cost is £4 for the period, ranging from -£14 (in 2013) to £50 (in 2008). 

67% of farms would gain from crop diversification and so might be willing to pay for it (technically 67% of the 

full sample of farms have a negative opportunity cost for crop diversification). 19% of the calculated opportunity 

costs are zero, and only 15% are positive. This proportion is consistent for the whole time period. The results 

also indicate that optimal reallocation of land use, which would have maximized long-run profit, would have 

led to increased compliance (by on average 26%) with the CAP’s recently introduced ‘2 or 3 crop rule’. The 

standard deviations are very large. This means that there is substantial heterogeneity in the opportunity costs 

of crop diversification. Despite the consistency of the trends, there seems to be variability in the actual values 

of the computed opportunity costs. The usual approach of assessing the opportunity cost of providing an 

additional unit of the environmental good imposes non-negativity (e.g., Sipiläinen and Huhtala 2013). This 
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would always lead to the policy implication that farmers should be compensated for increasing the environmental 

good. Our results are thus important, as they suggest that most farms do not need to be compensated for 

crop diversification and are even willing to pay for this as it could increase long-run profits. 

Table 7. Opportunity costs of the Shannon index for crop diversification per 0.1 ha using the proposed 

method, 2007-2013 

Year Number 
of farms 

Average 
(in constant 
2007 £) 

Std. Dev. 
(in  constant 
2007 £) 

 Share  

    Negative 0 Positive 

2007 44  34  290  55%  25% 20%  

2008 44  -149  830  73%  18%  9%  

2009 44  -244  1531  77%  18%  5%  

2010 44 -21  159  59% 23%  18% 

2011 44 -110  481 59% 18%  23% 

2012 44 -105  564  66%  16%  18% 

2013 44 -113  257  80%  11%  9%  
       

Period 308 -101 730 67% 19%  15% 
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4. CONCLUSIONS, RECOMMENDATIONS AND FURTHER WORK 
 
 
This report describes how SI can be assessed through efficiency and productivity measures that are augmented 

with positive and negative environmental externalities. These measures enable us to identify farms that have 

scope to improve in relation to SI. Using DEA, our empirical application focused on FBS cereal farms as well 

as (different types of) farm data collected through the survey of study area farms undertaken as part of 

Work Package 1.2A. 

Various general lessons can be drawn from our research. First, augmenting efficiency measures with positive 

and negative environmental externalities shows a more holistic picture of farm performance. Conventional 

efficiency scores may be lower than augmented sustainable efficiency scores leading to a misleading picture of 

farm sustainability. Second, augmented productivity measures are conceptually in line with ‘Sustainable 

Intensification’ in the sense that they assess how sustainable performance dynamically changes over time. A 

particularly convenient feature is that this builds theoretically and empirically on the sustainable efficiency 

framework. It shows how sustainable efficiency as well as the sustainable frontier changes over time. Third, 

our approach shows the importance of taking into account the intertemporal character of environmental 

factors. This has long been recognised by ecological economists, who suggested that one should consider the 

natural capital stock yielding ecosystem services. Our approach takes into account that ecosystem services are 

yielded simultaneously with conventional production, and part of the natural capital stock can be carried over as 

inputs for future production. Fourth, our research illustrates that one should be wary of ‘hidden’ assumptions 

about how positive and negative environmental externalities are implemented in the efficiency and productivity 

framework. We have shown that modelling environmental goods as conventional outputs leads to the 

assumption that increases of the environmental good are always costly for the farmer. Our empirical application 

to crop diversity suggests that long-term profit maximization is in fact positively associated with crop diversity. 

A more flexible approach to deployment of incentives and rewards might thus be needed. Fifth, this report 

shows that our efficiency and productivity framework is flexible in that it can be easily enriched with more 

and better data on the positive and negative environmental externalities, as evidenced by the application of 

our model to farm data collected through the Work Package 1.2A survey. 

Regarding the efficiency analysis applied to the FBS cereal farms, we found that the 53 kg of nitrogen per 

hectare is overused compared to the pollution-minimising benchmark. The average sustainable efficiency of 

the FBS cereal farms decreased from 2012 (0.69) to 2013 (0.59). Our productivity measure provides more 

detailed information about this shift: it suggests that there was a sustainable productivity decline (0.93) in 

2012-2013 due to a decline in efficiency (0.88), which was partly offset by an increase in technical change 

(1.11). This means that the FBS cereal farms on the frontier increased their performance with regard to SI, 

but that the inefficient farms did not manage to keep up with the frontier farms and even deteriorated in 

terms of SI. We also tried to contextualise the differences in sustainable efficiency for the FBS cereal farms. 

We found that sustainable efficiency is positively associated with size and that cereal farms in LFAs and 

upland soils have a lower SI efficiency. Nevertheless, we emphasise that caution is required to interpret these 

results given the small sample size. The sustainable efficiency for the data collected through the survey from 

Work Package 1.2A was on average 0.64. We could not find robust conclusions about the drivers, most likely 

due to the heterogeneity of the dataset and small sample size. 

Furthermore, we reviewed the literature on shadow-pricing positive and negative environmental externalities 

(i.e. calculating the opportunity cost of increasing the environmental good, or decreasing the negative externality, 
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by one unit). The most important message of this review is that shadow-pricing of positive and negative 

environmental externalities critically depends on how the externality is represented in the production 

economics framework. Addressing the problems of computing the shadow-price of crop diversification, we 

developed a new measure and found that for many farms crop diversification is generally associated with an 

increase in long-run profit. This is in contrast with the state-of-the-art of the academic literature, which 

assumes that crop diversification is always costly for farmers. A more flexible approach to deployment of 

incentives and rewards might thus be needed. 

Our approach is in line with the ongoing developments of agricultural policy-oriented research. The OECD 

currently has a working group which explicitly recommends ‘greening’ of productivity measures. The working 

group points out that an appropriate representation of pollutants in the production technology is necessary. 

It advocates doing so by taking into account the material balance and/or using a network model. Moreover, 

the working group has suggested taking into account the intertemporal characteristics of environmental 

factors that can be carried over from year to year. Our approach is clearly in line with these recommendations. 

Using the terms of the latest G20 Meeting of Agricultural Chief Scientists on 25 April 2016, our approach can 

be seen as a shift of focus on Total Factor Productivity (TFP, which only incorporates marketed inputs and 

outputs) to ‘Total Resource Productivity’ (which in addition includes non-marketed inputs and outputs). 

Our main recommendation is to collect additional, more detailed data. We believe it is worthwhile to make a 

more detailed account of the spatial and temporal characteristics of positive and negative environmental 

externalities. Appropriately assessing soil quality would substantially improve the analysis of providing 

environmental goods. In particular, this would more closely align our framework with the concept of a natural 

capital stock yielding ecosystem services. This would realistically model the intertemporal trade-off faced by 

farmers between using soil carbon for current production and for future production. In addition, future 

studies would benefit from spatially specific nutrient coefficients. This would enable analysts to increase the 

accuracy of identifying farms with scope to improve in relation to SI and the identification of drivers of SI. 
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5. KEY MESSAGES 
 
1. Farm sustainability can be measured and assessed by augmenting efficiency measures with positive and 

negative environmental externalities.  

2. The approach taken can be seen as a shift of focus from Total Factor Productivity to ‘Total Resource 

Productivity’ (which in addition to market input and outputs includes non-marketed inputs and outputs). 

3. We found that long-term profit maximization is positively associated with crop diversity.  

4. Generally FBS cereal farms can both improve their efficiency levels and minimise their nitrogen use. We 

found that FBS cereal farms overused  53 kg of nitrogen per hectare compared to the pollution-minimising 

benchmark 

5. Efficient FBS cereal farms increased their SI performance in 2013 with respect to 2012. However, 

inefficient farms did not manage to keep up with the efficient farms and even deteriorated in terms of SI. 

6. A more detailed account of the spatial and temporal characteristics of positive and negative environmental 

externalities would be required to provide accurate information to decision makers on farm SI performance.    
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6. LIST OF OUTPUTS AND PUBLICATIONS 
 

Knowledge Exchange 

Aspects of this research have been presented at the following conferences:  

 Agricultural Economics Society Conference. Warwick, April 2015  

 14th European Workshop on Efficiency and Productivity Analysis Helsinki, June 2015  

 Agricultural and Applied Economics Association Annual Meeting. San Francisco, July 2015 

 SIP Science meetings held in Leamington Spa (March 2015) and Bangor (April 2016) 

 

Academic Papers 

Papers currently in preparation are as follows: 

 European Journal of Operational Research (environmental inefficiency)  

 Ecological Economics (sustainable productivity growth) 

 Land Economics (shadow pricing environmental goods and bads)  
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8. APPENDICES 

Appendix 1 Sustainable efficiency 

Data 

All quantitative data are taken from the FBS dataset for the years 2012-13 and 2013-14. In order to obtain a 

homogenous sample, our application considers 93 pure cereal farms that do not produce any livestock. The 

farms are geographically spread throughout England and Wales. All size classes are represented. We only 

include the farms that have completed the fertiliser survey. 

We use data on variable inputs, quasi-fixed inputs, fixed factors and outputs. Land and labour are considered 

fixed factors. Aggregated cereal output is our conventional output. Variable inputs, quasi-fixed inputs and 

outputs are expressed in constant 2012 £. Land and labour are expressed in annual work hours and hectares, 

respectively. Table 1 presents the summary statistics of our dataset. The nutrient coefficients for both inputs 

and outputs are obtained from the OECD (2015) database (also see Appendix 2). This allows us to compute 

the nitrogen (N) and phosphorus (P) surplus. 

Table 1: Summary statistics of dataset. 

Variables Unit Mean Minimum Maximum Std. dev. 

Total Variable Inputs 2012 £ 182,099 22,832 971,518 156,548 

Capital Replacement Cost 2012 £ 2,569,220 39,884 13,041,065 2,440,613 

Land Hectares 178 14 697 142 

Labour Annual Work Hours 4,105 250 27,310 3,662 

Cereal Output 2012 £ 428,888 59,194 2,534,420 376,514 

Nitrogen Surplus kg 21,287 -2,301 218,737 24,951 

Phosphorus Surplus kg 4,062 -8,977 248,258 18,436 

 

Method 

Murty, Russell and Levkoff (2012) show how one can take into account the material balances concerns coined 

by Coelli, Lauwers and Van Huylenbroeck (2007) in a distance function approach by separately modelling the 

conventional and polluting technology. Serra, Chambers and Oude Lansink (2014) adapt this approach to a 

context of Spanish cereal farms. We extend their work to a dynamic context of environmental productivity 

growth. This approach has two distinct advantages compared to the original approach of Coelli, Lauwers and 

Van Huylenbroeck (2007). First, the measure can more adequately incorporate multiple pollutants. Instead 

of assigning subjective weights to the environmental impact, it seeks a coordinate-wise maximum average 

expansion of production of conventional outputs simultaneously with a coordinate-wise maximum average 

reduction of N surplus as well as P surplus. Second, it allows for a more natural representation of potential 

abatement. Capital and labour can be used to decrease the N and P surplus, but need not to be perfect 

substitutes of the latter. 

There are 𝐽 firms, 𝑗 ∈ ℜ+
𝐽 . We define a technology set that includes a vector of 𝑁 non-polluting inputs (e.g. 

labour), 𝑥 ∈ ℜ+
𝑁, a vector of 𝐾 polluting inputs (e.g. fertilisers, seeds), 𝑟 ∈ ℜ+

𝐾, a vector of 𝑀 conventional 

outputs (e.g. cereals produced), 𝑦 ∈ ℜ+
𝑀, a vector of runoff outputs from the polluting inputs (e.g. N and P 

surplus), 𝑧 ∈ ℜ+
𝑁, and a vector of environmental goods 𝑒 ∈ ℜ+

𝑂. 
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The general technology is defined as: 

(1) 𝑇 = {(𝑥𝑡, 𝑟𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑒𝑡−1, 𝑒𝑡): (𝑥𝑡 , 𝑟𝑡, 𝑒𝑡−1) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦𝑡 , 𝑧𝑡 , 𝑒𝑡)}  

The material balance condition (i.e. nutrient runoff) is defined as the nutrients in the inputs, 𝑟𝑘, minus the 

nutrients absorbed by the outputs, 𝑝𝑘: 

(2) 𝑧𝑘 = 𝑟𝑘 − 𝑝𝑘  

The nutrients absorbed by the outputs, 𝑝𝑘, can be treated as an input. Moreover, we assume that the 

production of environmental goods in the previous year serves as inputs of the conventional production of 

the current year. The production technology 𝑇𝑌 is modelled as: 

(3) 𝑇𝑌 = {(𝑥𝑡, 𝑟𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑒𝑡−1): (𝑥𝑡 , 𝑟𝑡,1 − 𝑧𝑡,1, … , 𝑟𝑡,𝑘 − 𝑧𝑡,𝑘 , 𝑒𝑡−1) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦𝑡}  

The polluting technology transforms the vector of polluting and non-polluting inputs to a vector of runoff outputs. 

It is thus assumed that non-polluting inputs such as labour and capital have a (negative) differential impact 

on the runoff outputs. The polluting technology 𝑇𝑍 is modelled as: 

(4) 𝑇𝑍 = {(𝑥, 𝑟, 𝑦, 𝑧): (𝑥, 𝑟) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑧}  

For the environmental-good-producing technology 𝑇𝐸, we assume that the production of environmental 

goods in the previous year serves as inputs of the production of environmental goods in the current year. 

Moreover, we assume that there is a trade-off between the production of environmental goods and the 

production of conventional outputs in the same year. It is modelled as: 

(5) 𝑇𝐸 = {(𝑦𝑡 , 𝑒𝑡−1, 𝑒𝑡): (−𝑦𝑡 , 𝑒𝑡−1) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑒𝑡}  

The general technology is modelled as the intersection of a production technology and polluting technology: 

(6) 𝑇 = 𝑇𝑌 ∩ 𝑇𝑍 ∩ 𝑇𝐸  

We use Data Envelopment Analysis (DEA) to approximate Eqs. (3)-(6). The time periods of the technology 

and of the observation are denoted by respectively 𝑠 and 𝑡. Assuming that there is one conventional output, 

an efficiency measure for the production technology in Eq. (3) is estimated as: 

(7) min
𝛽,𝜆

 𝛽𝑠,𝑡  𝑠. 𝑡. ∑ 𝜆𝑗,𝑠𝑥𝑗,𝑠𝐽
𝑗=1 ≤ 𝑥𝑡 , ∑ 𝜆𝑗,𝑠(𝑟𝑘

𝑗,𝑠
− 𝑧𝑘

𝑗,𝑠
)

𝐽
𝑗=1 ≤ 𝑟𝑘

𝑡 − 𝑧𝑘
𝑡 , ∑ 𝜆𝑗,𝑠𝑦𝑗,𝑠𝐽

𝑗=1 ≥ 𝑦𝑗,𝑡/𝛽  

Assuming that there are two runoff outputs (N and P surplus in our application), an efficiency measure for 

the polluting technology in Eq. (4) is estimated as: 

(8) min
𝛾1,𝛾2,𝜇

 
𝛾1

𝑠,𝑡+𝛾2
𝑠,𝑡

2
 𝑠. 𝑡. ∑ 𝜇𝑗,𝑠𝑥𝑗,𝑠𝐽

𝑗=1 ≤ 𝑥𝑡, ∑ 𝜇𝑗,𝑠𝑧𝑘
𝑗,𝑠𝐽

𝑗=1 ≤ 𝛾𝑘𝑧𝑘
𝑡 , ∑ 𝜇𝑗,𝑠𝑟𝑘

𝑗𝐽
𝑗=1 ≥ 𝑟𝑘

𝑡  

An efficiency measure for the technology regarding the environmental goods in Eq. (5) is estimated as: 

(9) min
𝛿,𝜆

 𝛿𝑠,𝑡  𝑠. 𝑡. ∑ 𝜆𝑗,𝑠𝑒𝑗,𝑠−1𝐽
𝑗=1 ≤ 𝑒𝑡−1, ∑ 𝜆𝑗,𝑠𝑒𝑗,𝑠𝐽

𝑗=1 ≥ 𝑒𝑗,𝑡/𝛿, ∑ 𝜆𝑗,𝑠𝑦𝑗,𝑠𝐽
𝑗=1 ≥ 𝑦𝑗,𝑡/𝛿 

The Färe-Grosskopf-Lovell index is computed as the arithmetic average of Eqs (8)-(10) to describe the general 

technology: 

(10) 𝐸𝑠,𝑡(𝑥, 𝑟, 𝑦, 𝑧, 𝑒) =
1

3
(𝛽𝑠,𝑡 +

𝛾1
𝑠,𝑡+𝛾2

𝑠,𝑡

2
+ 𝛿𝑠,𝑡) 
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To calculate sustainable efficiency, we compute 𝐸𝑡,𝑡(𝑥, 𝑟, 𝑦, 𝑧, 𝑒) with 𝑠 = 𝑡. 
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Appendix 2 Environmental efficiency 

Consider a firm that transforms a vector of 𝑚 = 1…𝑀 inputs, 𝑥 ∈ ℝ+
𝑀, to a vector of 𝑛 = 1…𝑁 outputs, 

𝑦 ∈ ℝ+
𝑁. 

The feasible set is defined as: 

𝑃 = {(𝑦, 𝑥): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}         (1) 

Assuming that 𝑃 satisfies the standard properties of convexity, compactness and strong disposability of inputs 

and outputs, the directional distance function is defined as (Chambers et al., 1996): 

�⃗⃗� 𝑇(𝑥, 𝑦; 𝑔𝑥 , 𝑔𝑦) = max
𝛽

 {𝛽: (𝑥 − 𝛽𝑔𝑥 , 𝑦 + 𝛽𝑔𝑦) ∈ 𝑃)}      (2) 

where 𝑔𝑥 and 𝑔𝑦 are the directional vectors that specify the direction of respectively input contraction and 

output expansion towards the frontier. �⃗⃗� 𝑇(. ) is a measure of technical inefficiency as it assesses the distance 

to the frontier in the direction of (𝑔𝑥 , 𝑔𝑦). The directional vectors are exogenously chosen by the researcher.  

The firm also emits pollutants. We assume that some or all inputs and outputs have a proportionate content 

of the single polluting nutrient given by 𝑎 and 𝑏 which are (𝑀 × 1) and (𝑁 × 1) vectors of non-negative 

nutrient coefficients (Coelli et al., 2007). Pollution is defined by the difference between the levels of the 

polluting nutrient in the outputs and inputs given by the material balance equation, 𝑧 = 𝑎′𝑥 − 𝑏′𝑦. 9 

From an environmental perspective it is appropriate to minimise pollution. This is translated to 

−𝑧∗(𝑥, 𝑦) = max
𝑥,𝑦

 {𝑥, 𝑦: 𝑏′𝑦 − 𝑎′𝑥 ∈ 𝑃}       (3) 

which makes the analogy to profit maximisation explicit. 

Solving Eq. (3) yields the input and output levels that minimise pollution. Analogous to profit inefficiency 

(Chambers et al., 1996), environmental inefficiency is defined as (Van Meensel and Lauwers, 2013): 

𝐸𝐼 =
(𝑎′𝑥−𝑏′𝑦)−𝑧∗(𝑥,𝑦)

𝑎′𝑔𝑥+𝑏′𝑔𝑦
          (4) 

where environmental  inefficiency 𝐸𝐼 is the normalised deviation between actual and minimised pollution. 

Continuing the analogy, environmental inefficiency can be decomposed into technical and allocative 

components (Van Meensel and Lauwers, 2013): 

(𝑎′𝑥−𝑏′𝑦)−𝑧∗(𝑥,𝑦)

𝑎′𝑔𝑥+𝑏′𝑔𝑦
= 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥 , 𝑔𝑦) + 𝐸𝐴𝐼       (5) 

where 𝐸𝐴𝐼 denotes environmental allocative inefficiency. 

To define the environmentally optimal directional vector, we adapt the Zofio et al. (2013) measure of profit 

inefficiency and introduce an environmental inefficiency measure where the directional vectors point 

towards the pollution-minimising benchmark.  

                                                           
9 It is theoretically possible to decrease pollution by using abatement technology. In practice, however, cereal farms do 
not incur additional costs on technology to decrease the nitrogen surplus.  
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First, we obtain the usual directional distance function for firm 𝑗 = 1,… , 𝐽 by solving the following Data 

Envelopment Analysis (DEA) problem10: 

�⃗⃗� 𝑇
1(𝑥, 𝑦, 𝐿; 𝑔𝑥 , 𝑔𝑦) = max

𝛽,𝛾
𝛽          (6) 

s.t. 

∑𝛾𝑗𝑥𝑗

𝐽

𝑗=1

≤ 𝑥𝑚 − 𝛽𝑔𝑥𝑚
, 𝑚 = 1,… ,𝑀  

𝑦𝑛 + 𝛽𝑔𝑦𝑛
≤ ∑𝛾𝑗𝑦𝑗

𝐽

𝑗=1

, 𝑛 = 1,… , 𝑁 

∑𝛾𝑗

𝐽

𝑗=1

= 1 

𝛾𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 

Second, we obtain the directional distance function with optimal environmental directional vectors for firm 

𝑗 = 1,… , 𝐽 by solving the following DEA problem: 

�⃗⃗� 𝑇
2(𝑥, 𝑦, 𝐿; 𝑔𝑥𝑚

∗ , 𝑔𝑦𝑛
∗ ) = max

𝛽,𝛾,𝑔𝑥𝑚
∗ ,𝑔𝑦𝑛

∗
𝛽        (7) 

s.t. 

∑𝛾𝑗𝑥𝑗

𝐽

𝑗=1

≤ 𝑥𝑚 − 𝛽𝑔𝑥𝑚
∗ , 𝑚 = 1,… ,𝑀  

𝑦𝑛 + 𝛽𝑔𝑦𝑛
∗ ≤ ∑𝛾𝑗𝑦𝑗

𝐽

𝑗=1

, 𝑛 = 1,… , 𝑁 

∑ 𝑎𝑚𝑔𝑥𝑚
∗

𝑀

𝑚=1

+ ∑ 𝑏𝑛𝑔𝑦𝑛
∗

𝑁

𝑛=1

= 1 

∑𝛾𝑗

𝐽

𝑗=1

= 1 

𝛾𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 

In contrast to Eq. (6), Eq. (7) endogenises the directional vectors by the third constraint. The directional 

vectors are optimised in such a way that they point towards the pollution-minimising benchmark while 

                                                           
10 In line with Zofio et al. (2013), we choose 𝑔𝑥𝑚

= 𝑔𝑦𝑛
= 1/(∑ 𝑎𝑚

𝑀
𝑚=1 + ∑ 𝑏𝑛

𝑁
𝑛=1 ).  
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ensuring that (𝑔𝑥
∗ , 𝑔𝑥

∗) ≠ (0𝑀 , 0𝑁) and ∑ 𝑎𝑚𝑔𝑥𝑚
∗𝑀

𝑚=1 + ∑ 𝑏𝑛𝑔𝑦𝑛
∗𝑁

𝑛=1 = 1. If �⃗⃗� 𝑇
2(. ) > 0, the firm is 

environmentally inefficient and can curb pollution. Eq. (6) shows the source of environmental inefficiency. If 

�⃗⃗� 𝑇
1(. ) > 0, environmental inefficiency is due to technical inefficiency. This inefficiency may be caused by 

wrong engineering practices. If �⃗⃗� 𝑇
1(. ) = 0, environmental inefficiency is due to environmental allocative 

inefficiency. In this case, the firm lies on the frontier, but divert their inputs and outputs away from the 

pollution-minimising benchmark given the proportionate nitrogen contents. 

Although Eq. (7) is a non-linear program, it can be linearised without changing the objective function by 

setting 𝜇𝑥𝑚
= 𝛽𝑔𝑥𝑚

∗  and 𝜇𝑦𝑛
= 𝛽𝑔𝑦𝑛

∗ . As a result, ∑ 𝑎𝑚𝑔𝑥𝑚
∗𝑀

𝑚=1 + ∑ 𝑏𝑛𝑔𝑦𝑛
∗𝑁

𝑛=1 = 1 becomes ∑ 𝑎𝑚𝜇𝑥𝑚

𝑀
𝑚=1 +

∑ 𝑏𝑛𝜇𝑦𝑛

𝑁
𝑛=1 = 𝛽. This modification is equivalent if and only if 𝛽 > 0 (Zofio et al., 2013). 
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Appendix 3 Sustainable productivity growth 

Data 

We refer to Appendix 1 (Sustainable efficiency) for a description of the data. 

Method 

Our approach is based on the distance functions in 𝐸(. ) developed in Appendix 1 (Sustainable efficiency). 

We use the environmental Malmquist productivity index to assess environmental productivity. An example 

of an application of the Malmquist index in an environmental context can be found in Hoang and Coelli (2011). 

The environmental Malmquist productivity index for time period 𝑢 is computed as: 

(1) 𝑀𝑢(. ) =
𝐸𝑢,𝑢+1(.)

𝐸𝑢,𝑢(.)
 

The environmental Malmquist productivity index for time period 𝑢 + 1 is computed as: 

(2) 𝑀𝑢+1(. ) =
𝐸𝑢+1,𝑢+1(.)

𝐸𝑢+1,𝑢(.)
 

The environmental Malmquist productivity change between 𝑢 and 𝑢 + 1 is the geometric mean of Eqs (9) 

and (10): 

(3) 𝑀𝐶𝑢,𝑢+1(. ) = [
𝐸𝑢,𝑢+1(.)

𝐸𝑢,𝑢(.)
×

𝐸𝑢+1,𝑢+1(.)

𝐸𝑢+1,𝑢(.)
]

1

2
 

Eq. (11) can be decomposed into technical efficiency change and technical change. Technical efficiency 

change is defined as: 

(4) 𝑇𝐸𝐶𝑢,𝑢+1(. ) =
𝐸𝑢+1,𝑢+1(.)

𝐸𝑢,𝑢(.)
 

𝑇𝐸𝐶𝑢,𝑢+1(𝑥, 𝑟, 𝑦, 𝑧) is always larger than zero. If it is higher (lower) than unity, technical efficiency has 

improved (worsened) in time.  

Technical change is defined as:  

(5) 𝑇𝐶𝑢,𝑢+1(. ) = [
𝐸𝑢,𝑢(.)

𝐸𝑢+1,𝑢(.)
×

𝐸𝑢,𝑢+1(.)

𝐸𝑢+1,𝑢+1(.)
]

1

2
 

𝑇𝐶𝑢,𝑢+1(𝑥, 𝑟, 𝑦, 𝑧) is also always larger than zero. If it is higher (lower) than unity, the firm experiences 

technical progress (regress). 

Figure 1 shows environmental productivity growth in (𝑧, 𝑟) dimension. Firm 𝐴 has an allocation of (𝑧, 𝑟) of 

𝐴1 and 𝐴2 at time 1 and time 2, respectively. The corresponding technology sets are denoted by 𝑇𝑍,1 and 

𝑇𝑍,2. The technical efficiency changes from 
|𝑂1𝐵1|

|𝑂1𝐴1|
 to

|𝑂2𝐵2|

|𝑂2𝐴2|
. As a result, 𝑇𝐸𝐶1,2(. ) =

|𝑂1𝐵1|

|𝑂1𝐴1|

|𝑂2𝐵2|

|𝑂2𝐴2|
⁄ > 1, 

indicating an increase in technical efficiency. The technical change is the geometric mean of 
|𝑂1𝐵1|

|𝑂1𝐵2′
|
 and 
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|𝑂2𝐵1′
|

|𝑂2𝐵2|
. As a result, 𝑇𝐸𝐶1,2(. ) = √|𝑂1𝐵1|

|𝑂1𝐴1|

|𝑂1𝐵2′
|

|𝑂1𝐴1|
⁄ ×

|𝑂2𝐵1′
|

|𝑂2𝐴2|

|𝑂2𝐵2|

|𝑂2𝐴2|
⁄ > 1. The technical frontier shifts 

downwards, indicating technical progress in (𝑧, 𝑟) dimension11. 

 

Figure 1: Environmental productivity growth in (𝑧, 𝑟) dimension. 
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11 The best-practice benchmark can generate less runoff (e.g. N surplus) for a given level of polluting input (e.g. 

fertiliser). 
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Appendix 4 Collected survey data – Sustainable efficiency 

Method 

Our model is based on Appendix 1 (Sustainable efficiency). However: 

There are 𝐽 firms, 𝑗 ∈ ℜ+
𝐽 . We define a technology set that includes a vector of 𝑁 non-polluting inputs (e.g. 

labour), 𝑥 ∈ ℜ+
𝑁, a vector of 𝐾 polluting inputs (e.g. fertilisers, seeds), 𝑟 ∈ ℜ+

𝐾, a vector of 𝑀 conventional 

outputs (e.g. cereals produced), 𝑦 ∈ ℜ+
𝑀, a vector of runoff outputs from the polluting inputs (e.g. greenhouse 

gas (GHG) emission), 𝑧 ∈ ℜ+
𝑁, and a vector of environmental goods 𝑒 ∈ ℜ+

𝑂. 

The general technology is defined as: 

(1) 𝑇 = {(𝑥𝑡, 𝑟𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑒𝑡): (𝑥𝑡, 𝑟𝑡) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦𝑡 , 𝑧𝑡 , 𝑒𝑡)}  

The material balance condition (i.e. GHG emission) is obtained from the FARMSCOPER model. 

We assume that conventional outputs are generated by conventional inputs. Moreover, this process 

produces environmental goods as by-products, which we treat as weakly disposable outputs. The conventional 

technology 𝑇𝑌 is modelled as: 

(2) 𝑇𝑌 = {(𝑥𝑡, 𝑦𝑡 , 𝑒𝑡): 𝑥𝑡  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦𝑡 , 𝑒𝑡)𝑡}  

The polluting technology transforms the vector of polluting inputs to a vector of runoff outputs. The polluting 

technology 𝑇𝑍 is modelled as: 

(3) 𝑇𝑍 = {(𝑥, 𝑟, 𝑧): (𝑥, 𝑟) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑧}  

For the environmental-good-producing technology 𝑇𝐸, we assume that the production of environmental 

goods is driven by a sub-vector of inputs  𝑥𝑡,𝐸 that generate the environmental goods. Moreover, we assume 

that there is a trade-off between the production of environmental goods and the production of conventional 

outputs. This is modelled as: 

(4) 𝑇𝐸 = {(𝑦𝑡 , 𝑒𝑡): (−𝑦𝑡 , 𝑥𝑡,𝐸) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑒𝑡}  

The general technology is modelled as the intersection of a production technology and polluting technology: 

(5) 𝑇 = 𝑇𝑌 ∩ 𝑇𝑍 ∩ 𝑇𝐸  

We use Data Envelopment Analysis (DEA) to approximate Eqs. (3)-(5). Assuming that there is one 

conventional output, an efficiency measure for the production technology in Eq. (3) is estimated as: 

(6) min
𝛽,𝜆

 𝛽𝑠,𝑡  𝑠. 𝑡. ∑ 𝜆𝑗,𝑠𝑥𝑗,𝑠𝐽
𝑗=1 ≤ 𝑥𝑡 , ∑ 𝜆𝑗,𝑠𝑦𝑗,𝑠𝐽

𝑗=1 ≥
𝑦𝑗,𝑡

𝛽
, ∑ 𝜆𝑗,𝑠𝑒𝑗,𝑠𝐽

𝑗=1 = 𝑒𝑡  

Assuming that there is one runoff output (GHG emission), an efficiency measure for the polluting technology 

in Eq. (4) is estimated as: 

(7) min
𝛾1,𝜇

 𝛾1
𝑠,𝑡  𝑠. 𝑡. ∑ 𝜇𝑗,𝑠𝑧𝑘

𝑗,𝑠𝐽
𝑗=1 ≤ 𝛾𝑘𝑧𝑘

𝑡 , ∑ 𝜇𝑗,𝑠𝑟𝑘
𝑗𝐽

𝑗=1 ≥ 𝑟𝑘
𝑡  

An efficiency measure for the technology regarding the environmental goods in Eq. (5) is estimated as: 

(8) min
𝛿,𝜆

 𝛿𝑠,𝑡  𝑠. 𝑡. ∑ 𝜆𝑗,𝑠𝑥𝐸
𝑗,𝑠𝐽

𝑗=1 ≤ 𝑥𝐸
𝑗,𝑠

, ∑ 𝜆𝑗,𝑠𝑒𝑗,𝑠𝐽
𝑗=1 ≥ 𝑒𝑗,𝑡/𝛿, ∑ 𝜆𝑗,𝑠𝑦𝑗,𝑠𝐽

𝑗=1 ≥ 𝑦𝑗,𝑡/𝛿 
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The Färe-Grosskopf-Lovell index is computed as the arithmetic average of Eqs. (6)-(8) to describe the general 

technology: 

(9) 𝐸𝑠,𝑡(𝑥, 𝑟, 𝑦, 𝑧, 𝑒) =
1

3
(𝛽𝑠,𝑡 + 𝛾1

𝑠,𝑡 + 𝛿𝑠,𝑡) 

To calculate sustainable efficiency, we compute 𝐸𝑡,𝑡(𝑥, 𝑟, 𝑦, 𝑧, 𝑒) with 𝑠 = 𝑡. 
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Appendix 5 Environmental Goods as Conventional Outputs in a Distance Function 

Theoretical Background 

Consider a firm that transforms a vector of 𝑚 = 1…𝑀 inputs, 𝑥 ∈ ℝ+
𝑀 to a vector of 𝑛 = 1…𝑁 outputs, 𝑦 ∈

ℝ+
𝑁. This transformation also yields a vector of 𝑑 = 1…𝐷 environmental goods, 𝑒 ∈ ℝ+

𝐷. In analogy to 

treating pollutants as inputs in the tradition of Baumol and Oates (1988), environmental goods are commonly 

assumed to have the same axiomatic properties as outputs. All feasible combinations of inputs, outputs and 

environmental goods (𝑥, 𝑦, 𝑒) are characterised by the primitive technology set 𝑇: 

(1)  𝑇 = {(𝑥, 𝑦, 𝑒) ∶ 𝑥 can produce (𝑦, 𝑒)} 

𝑇 is assumed to be a closed, bounded and convex technology set with strongly disposable inputs, outputs 

and environmental goods. Most reviewed studies employ an output set, holding inputs constant. However, 

this keeps the relationship between inputs and environmental goods implicit. The primitive technology set 

encompasses the output set and makes this relationship explicit (Färe and Grosskopf, 2005). Following Chambers 

et al. (1996), Chambers et al. (1998), Eq. (1) can be equally represented by the directional distance function 

�⃗⃗� 𝑇(𝑥, 𝑦, 𝑒; 𝑔𝑥 , 𝑔𝑦, 𝑔𝑒): 

(2) �⃗⃗� 𝑇(𝑥, 𝑦, 𝑒; 𝑔𝑥, 𝑔𝑦, 𝑔𝑒) = max
𝛽

 {𝛽: (𝑥 − 𝛽𝑔𝑥, 𝑦 + 𝛽𝑔𝑦 , 𝑒 + 𝛽𝑔𝑒 ) ∈ 𝑇} 

where 𝑔𝑥, 𝑔𝑦 and 𝑔𝑒 are the directional vectors that specify the direction of respectively input contraction, 

output expansion and environmental good expansion towards the frontier. �⃗⃗� 𝑇(. ) ≥ 0 is differentiable and 

measures the distance to the frontier in the direction of (𝑔𝑥 , 𝑔𝑦, 𝑔𝑒). 

The derivative of �⃗⃗� 𝑇(. ) with respect to outputs is: 

(3) ∇𝑦�⃗⃗� 𝑇(𝑥, 𝑦, 𝑒; 𝑔𝑥, 𝑔𝑦, 𝑔𝑒) ≤ 0 

The derivative of �⃗⃗� 𝑇(. ) with respect to inputs is: 

(4) ∇𝑥�⃗⃗� 𝑇(𝑥, 𝑦, 𝑒; 𝑔𝑥, 𝑔𝑦, 𝑔𝑒) ≥ 0 

The derivative of �⃗⃗� 𝑇(. ) with respect to environmental goods is: 

(5) ∇𝑒�⃗⃗� 𝑇(𝑥, 𝑦, 𝑒; 𝑔𝑥, 𝑔𝑦, 𝑔𝑒) ≤ 0 

Although environmental goods are non-marketed, we can assess the unknown shadow price 𝑢 by exploiting 

the directional distance function’s dual relationship to the profit function and using the envelope theorem. 

The profit function Π(𝑤, 𝑝, 𝑢) maximises profit for prices (𝑤, 𝑝, 𝑢) given 𝑃(𝑥) (Chambers et al., 1996, 

Chambers et al., 1998): 

(6) Π(𝑤, 𝑝, 𝑢) = max
𝑥,𝑦,𝑒

 {𝑥, 𝑦, 𝑒: 𝑝′𝑦 + 𝑢′𝑒 − 𝑤′𝑥 ∈ 𝑇} 
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The Trade-Off between Environmental Goods and Conventional Outputs 

The trade-off between environmental goods and conventional outputs can be inferred using the envelope 

theorem (Chambers et al., 1996, Chambers et al., 1998): 

(7) −
∇𝑒�⃗⃗� 𝑇(𝑥,𝑦,𝑒;𝑔𝑥,𝑔𝑦,𝑔𝑒)

∇𝑦�⃗⃗� 𝑇(𝑥,𝑦,𝑒;𝑔𝑥,𝑔𝑦,𝑔𝑒)
= −

𝑢

𝑝
≤ 0 

Eq. (7) assumes that the shadow price 𝑢 is positive and the relationship between marketable outputs and 

environmental goods is competitive for all levels of the environmental good. Figure 1 shows the production 

possibility frontier for one environmental good 𝑒1 and one marketable output 𝑦1, holding other environmental 

goods, other outputs and inputs constant.  

 

Figure 1. Trade-off between one marketable output 𝒚𝟏 and one environmental good 𝒆𝟏, holding other 

outputs, other environmental goods and inputs constant. 

 

Färe et al. (2001), Bellenger and Herlihy (2010), Ruijs et al. (2013), Sipiläinen and Huhtala (2013), Bostian and 

Herlihy (2014) and Ruijs et al. (2015) use Eq. (7) to calculate the shadow price of environmental goods. To 

our surprise, only few studies that use an augmented distance function discuss or check the assumption of a 

competitive relationship between marketable outputs and environmental goods in depth. Macpherson et al. 

(2010) conduct a correlation analysis and do not find a robust negative competitive relationship between the 

environmental goods and marketable outputs. Sipiläinen and Huhtala (2013) briefly mention that crop 

diversification has a private value, as it is a way to hedge against uncertainty. Ruijs et al. (2013) and Ruijs et 

al. (2015) empirically check the transformation function between marketable outputs and environmental 

goods by parametric estimation and confirm a competitive relationship. Bostian and Herlihy (2014) expect 

that agricultural production contributes to the degradation of wetland condition due to drainage, channelling 

and runoff, but qualify this by claiming that the biophysical relationship is not exactly known. 
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The assumed competitive relationship has been contested in recent literature. Several contributions argue 

that some environmental goods are complementary to conventional production for lower levels of the 

environmental good, and competitive for higher levels (Hodge, 2008). Such a complementary-competitive 

relationship is hypothesised for inter alia the environmental quality of grassland and livestock production 

(Vatn, 2002), pollinator habitat and crop production (Wossink and Swinton, 2007), and the entire ecosystem 

on the farm and total agricultural production (Hodge, 2000). 

There is nonetheless only limited empirical evidence of this relationship. Peerlings and Polman (2004) arrive 

at a competitive relationship between milk production on the one hand, and wildlife and landscape services 

on the other hand. Havlik et al. (2005) find evidence of a complementary-competitive relationship between 

grassland biodiversity and cattle production. Sauer and Wossink (2013) approximate a ‘bundled’ environmental 

good as the total green payments provided by the CAP. They apply a flexible transformation function and 

obtain a complementary relationship for most farms and a competitive relationship for a minority of farms. 

The Trade-Off between Inputs and Environmental Goods 

Using the envelope theorem, the trade-off between inputs and environmental goods can also be inferred 

(Chambers et al., 1996, Chambers et al., 1998): 

(8) −
∇𝑥�⃗⃗� 𝑇(𝑥,𝑦,𝑒;𝑔𝑥,𝑔𝑦,𝑔𝑒)

∇𝑒�⃗⃗� 𝑇(𝑥,𝑦,𝑒;𝑔𝑥,𝑔𝑦,𝑔𝑒)
=

𝑤

𝑢
≥ 0 

By treating an environmental good as a conventional output, it is implicitly assumed that the provision of any 

environmental good is non-decreasing for increases in any input. Figure 2 shows the production possibility 

frontier for one input 𝑥1 and one environmental good 𝑒1, holding other inputs, other environmental goods 

and outputs constant. Eq. (8) can in principle be used to compute the shadow price 𝑢. However, as most 

studies focus on the trade-off between environmental goods and marketable outputs, Eq. (8) has not been 

of interest in practice. 

 

Figure 2. Trade-off between one input 𝒙𝟏 and one environmental good 𝒆𝟏, holding other inputs, other 

environmental goods and outputs constant. 
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The augmented production economics approach 

Färe et al. (2001), Areal et al. (2012) and Sipiläinen and Huhtala (2013) augment a conventional production 

economics framework (with marketable inputs and outputs) with respectively the characteristics of public 

land conservation (the number of conservation sites, the area at each site and the total area available for 

fishing), the share of grassland, and the Shannon index for crop diversification. This ‘augmented production 

economics approach’ is intuitive for economists as it is an extension of familiar neoclassical models. Interestingly, 

none of these studies elaborates on the implicit assumption that the provision of an environmental good is 

non-decreasing in the inputs if one models an environmental good as a conventional output. 

One may argue that this assumption would hold for inputs that compete for environmental goods jointly 

produced with marketable outputs. For example, farmers may set aside land and some other inputs to 

produce conservation buffers and cover crops that could also have been used to produce marketable 

outputs (Wossink and Swinton, 2007). However, as both inputs and environmental goods are heterogeneous, 

we argue that the expected relationship between input use and provision of environmental goods may also 

be non-positive or unclear. We expect a non-positive relationship for inputs that contain environmentally 

damaging substances. Fertiliser use may lead to nitrogen leaching in the soil and eventually to lower 

groundwater quality. It may also volatilise into nitrous oxide, a greenhouse gas (Reinhard et al., 1999). 

Pesticide use is expected to have a negative impact on farm biodiversity as it suppresses beneficial organisms 

such as beetles and birds (Skevas et al., 2012). The relationship may depend on the environmental good. For 

instance, although fertiliser use may decrease groundwater quality, its impact on farm biodiversity is uncertain.  

Augmented production economics approaches have focused on the output distance function, holding inputs 

constant. This may be the reason why the implicit assumption of the non-negative relationship between 

inputs and environmental goods has not been motivated. Nevertheless, the underlying production technology 

still depends on inputs. An incorrect assumption about the relationship between inputs and environmental 

goods also leads to an incorrect computation of the output distance function. Unfortunately, making such an 

a priori assumption is no trivial task.  

The biophysical approach 

Several studies veer from the augmented production economics approach. The ‘biophysical approach’ 

considers marketable outputs and environmental goods, but no marketable inputs. Although environmental, 

non-marketable inputs are generally chosen more sparingly and carefully than in the augmented production 

economics approach, this is necessarily done on an ad hoc basis, which compromises economic intuition. 

Macpherson et al. (2010) consider four environmental inputs (percentage edge forest, percentage of 

impervious surface, percentage of riparian agriculture and road density). Explicitly stating that “this model 

specification lacks the clarity of the input–output relationship of a typical model in production economics” 

(p. 1921), they conduct a correlation analysis with the outputs (per capita income, population density, 

percentage of wetland and percentage of interior forest) as a robustness test and only partly confirm a 

positive relationship. Bostian and Herlihy (2014) solely implement joint land use as an input. Bellenger and 

Herlihy (2009), Bellenger and Herlihy (2010) and Ruijs et al. (2013) do not even consider any inputs. 

Convexity 

More and more studies argue that the environmental technology set is non-convex (Chavas and Di Falco, 

2012, Di Falco and Chavas, 2009). The convexity assumption is invoked for analytical rather than theoretical 

reasons (Pope and Johnson, 2013). Again, Ruijs et al. (2013) and Ruijs et al. (2015) are the only authors that 
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empirically test the convexity assumption. They do not find evidence of convexity. This implies that their 

resulting opportunity cost does not maximize benefits and cannot be used to design a pricing mechanism. 

Lessons from the Debate on Environmental Bads 

It is interesting to compare our concerns to the heated debate on how environmental bads (i.e. pollutants) 

should be implemented in a distance function framework. Environmental bads are traditionally implemented 

directly in a conventional production economics framework with marketable inputs and outputs. Earlier 

contributions suggest that pollutants should be modelled as conventional inputs, as these are assumed to be 

complements of marketable outputs (e.g. Baumol and Oates, 1988, Hailu and Veeman, 2001, Reinhard et al., 

1999, 2000). However, this approach unrealistically assumes that fixed amounts of inputs can produce an 

unlimited amount of pollutants (Färe and Grosskopf, 2003). Most authors therefore treat pollutants as weakly 

disposable outputs that have complementary characteristics for lower levels of pollution and competitive 

characteristics for higher levels of pollution (e.g. Färe et al., 2005, 2014, Pittman, 1983). The rationale is that 

conventional production increases with pollution, but that clean-up opportunity costs arise for higher pollution 

levels. This implies that the shadow price of pollution can also become negative. This has been contested by 

Hailu and Veeman (2001) who therefore model pollution as an input. Färe and Grosskopf (2003) claim that 

this is a conflation of the choice of the production technology and the directional vector. They propose that 

although pollution should be modelled as a weakly disposable output, it is still possible to choose a directional 

vector that points towards the complementary part of the frontier, which would result in positive shadow prices. 

According to recent contributions, implementing a pollutant as an input or weakly disposable output may 

also lead to unacceptable implications for trade-offs among inputs, outputs and pollutants (Førsund, 2009). 

Coelli et al. (2007) introduce an environmental efficiency measure that complies with the material balance 

condition. Instead of adding pollution as an additional variable, polluting inputs and outputs are chosen in a 

pollution-minimising way. Murty et al. (2012) model the polluting technology as the intersection of an 

intended-output technology and a residual-generation technology.  

Environmental goods are now commonly modelled as conventional outputs in a distance function framework, 

analogous to how pollutants have been modelled as conventional inputs in the earlier environmental 

economics literature. This assumes that there is a competitive relationship with marketable outputs for all 

levels of the environmental good and that the shadow price of an environmental good is non-negative. 

Recent studies have put forward that an environmental good may also be complementary to marketable 

outputs. Treating an environmental good as a conventional output also implies that the provision of an 

environmental good is assumed to be non-decreasing in the inputs. For the augmented production economics 

approach, which includes all marketable inputs, this assumption may be incorrect for at least some inputs. 

Clearly, inputs such as fertilisers and pesticides decrease the provision of some environmental goods. This 

critique is somewhat analogous to Murty et al. (2012), who argue that treating a pollutant as an input incorrectly 

implies that the trade-off between a pollution-generating input and a pollutant is assumed to be non-positive. 

One could adapt a biophysical approach and focus on environmental, non-marketable inputs. However, inputs 

are then chosen ad hoc, which compromises economic intuition. An additional difficulty is that environmental 

goods are considerably more heterogeneous than environmental bads, where the axiomatic properties are 

better understood. 

A potentially complementary-competitive relationship between environmental goods and marketable outputs 

calls into question whether the weak disposability assumption should be invoked for an environmental good 

(Van Huylenbroeck et al., 2007), as has been frequently done for pollutants. This would imply that the shadow 
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price of an environmental good could be negative or positive (Wossink and Swinton, 2007). The empirical 

evidence of a complementary-competitive relationship is however only limited. Moreover, the sheer 

heterogeneity of inputs and environmental goods complicates the a priori assumption about the trade-off 

between inputs and environmental goods. Finally, convexity of a technology set augmented with environmental 

goods is an assumption contested by the ecological literature. 

We have thus identified several problems in the increasingly common practice of augmenting a distance function 

with an environmental good treated as a conventional output. The weak disposability assumption is faced 

with similar problems. The shadow prices obtained by exploiting the distance function’s dual relationship to 

the value function may therefore also be flawed. A fundamental problem is that the exact axiomatic properties 

of environmental goods are difficult to verify. 
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Appendix 6 Instructions to compute sustainable efficiency, environmental inefficiency and 

sustainable productivity 

 
Download the R package on http://www.r-project.org/. It is completely free. 

Prepare the data for usage in R: 

Structure the data as follows (the order and name of ID, inputs and outputs do not matter, as long as they 

are in the first row and do not contain any spaces): 

ID Input1 Input2 Output1 Output2 Input1 Input2 Output1 Output2 

1 200 30000 10000 10 0.5 0.4 0.7 0.9 

2 26 400000 4500 13 0.5 0.4 0.7 0.9 

3 186 510000 1000 17 0.5 0.4 0.7 0.9 

4 154 68000 6700 18 0.5 0.4 0.7 0.9 

5 320 90120 8500 19 0.5 0.4 0.7 0.9 

 
The file should be saved as a txt-file. 

Open the relevant main file 

Follow the instructions in the workspace. 

 
There are four main files: 

MasterfileGoodsBads.R (see Sections 3 and 5) 

MasterfileNutrient.R (see Section 4) 

MasterfileGoodsBadsSurvey.R (see Section 7) 

Biodiversity4.R (see Section 8) 

 
To make the main files fully operational, one also needs to save the auxiliary files in the same directory. The 

auxiliary files are: 

Bbad.R, Bgood.R and Bprod.R (belonging to MasterfileGoodsBads.R and MasterfileGoodsBadsSurvey.R) 

DynNut1.R and DynNut2.R (belonging to MasterfileNutrient.R) 

 
For any further questions, please contact Francisco Areal on f.j.areal@reading.ac.uk 

http://www.r-project.org/

