Normal levels of contaminant concentrations in soils are referred to in the contaminated land Statutory Guidance for the Part 2A regime (Wales), published by Welsh Government, 2012. This technical guidance gives an indication as to what arsenic concentrations can be expected in soils based on results from samples systematically collected across Wales. Normal Background Concentrations (NBCs) can be used along with other criteria (e.g. site investigation data and risk assessments) to help decide whether land is contaminated land as defined by Part 2A, on a site-by-site basis.

The NBCs are not intended to be a tool to be utilised when undertaking works via the planning regime. They are contaminant concentrations that are seen as typical and widespread in topsoils (depth 0 – 15 cm) and include contributions from both natural and diffuse anthropogenic sources. When using this Guidance, please refer to the section on ‘Using Normal Background Concentrations’ on page 4, the supplementary information provided by Ander et al. (2013), and the revised Part 2A Statutory Guidance (Wales).

ARSENIC (As)

January 2013.

Arsenic (As) is a chemical element that is naturally found in trace amounts in our environment so, in addition to being referred to as a metalloid, it is a trace element. It is the 20th most abundant element in rocks (1-2 mg/kg) and, due to its reputation as the Victorian’s poison of choice, awareness of the harmful aspects of this element to human health is high.

It occurs in many geological materials with the highest concentrations found in arsenic sulphide minerals such as arsenopyrite (FeAsS), as well as an accessory element in other sulphides such as iron pyrites (FeS2). A significant source of As released into the surface environment is as a result of oxidation of sulphide minerals. Phosphate-rich rocks, ironstones and coal-bearing strata can also contain high levels of As. Overall, As minerals and compounds are generally soluble but the mobility of As can be limited by strong sorption by clays, hydroxides and organic matter. Under normal oxidising conditions the most common form of As in solution is the arsenate oxyanion (containing As5+), under more reducing conditions (e.g. waterlogging) the arsenite oxyanion (containing As3+) is more stable.

General diffuse anthropogenic sources of As are from dust particles and waste materials from historical metalliferous mining, smelting processes and coal burning. In the built environment increased levels of As may be related to specific historical land use, especially metallurgical industries. Chromium-copper-arsenate (CCA) was developed in 1933 as a wood preservative and, although restricted by regulation from 2004, is a potential source of widespread contamination.

NORMAL BACKGROUND CONCENTRATIONS (NBCs)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Area (km²)</th>
<th>Area (%)</th>
<th>NBC (mg/kg)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1</td>
<td>1,200</td>
<td>6</td>
<td>250</td>
<td>342</td>
</tr>
<tr>
<td>Mineralisation</td>
<td>1,100</td>
<td>5</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>Principal</td>
<td>18,900</td>
<td>89</td>
<td>36</td>
<td>1,270</td>
</tr>
</tbody>
</table>

Table 1: NBCs for the arsenic domains (cited to 2 significant figures, n is number of samples used in the calculation). Arsenic is determined by laboratory-based X-ray fluorescence spectrometry (XRFs), i.e. total As in soils sampled from a depth 0 – 15 cm. The NBC is the upper 95% confidence limit of the 95th percentile of the domain data.
Methods

NBCs are calculated using As data from soils systematically collected from a variety of land uses, analysed using certified methods, and with demonstrably high levels of quality assurance. For this purpose the primary data sets used are the National Soil Inventory (NSI) from the Soil Survey of England and Wales (now the National Soil Resources Institute (NSRI), Cranfield University, UK) and the British Geological Survey’s G-BASE samples collected from the Cardiff and Swansea urban areas (see Figure 1). All data used are for total concentrations measured by X-ray fluorescence spectrometry (XRFS). Soils used to calculate NBCs are from a consistent depth (0 – 15 cm) and are based on aggregating sub-samples collected from within a 20-m square. Wales has far fewer, and significantly less densely sampled, soil sites compared to England, so the contaminant NBCs for Wales are associated with a much greater level of uncertainty than those previously determined for England.

Welsh soils have developed on a diverse range of parent materials, including those hosting metalliferous mineralisation, and therefore are inherently variable in their chemical composition (Figure 2). These soils have also been subjected to a long history of diffuse pollution, particularly around the South Wales Coalfield.

Figure 1: Map showing the distribution of samples used in the As NBC determination for Wales. NSI (XRFS) covers the whole country at a sample density of 1:25 km². G-BASE sampling densities for the urban areas of Swansea and Cardiff are 4:1 km². Total data set consists of 798 NSI and 877 G-BASE urban samples.

Figure 2: Map showing As in topsoil as a percentile classified interpolated image (all data are total concentrations by XRFS and colour thresholds designed for highly skewed data).
Results for As in topsoils range from 5.7 – 2,600 mg/kg with a mean of 36.2 mg/kg and a median of 20.2 mg/kg. In order to establish meaningful NBCs, soils are grouped in domains, defined by the most significant controls on a contaminant’s high concentrations and distribution.

NBCs are determined for each domain using robust statistical analysis that investigates the distribution of results and, by a process of iteration, takes into account the concentrations that may be associated with point source contamination. “Normal” levels of contaminants are referred to in the Statutory Guidance (Wales) (Sections 3.21-3.26 and 4.21(b)). They are represented here by the upper 95% confidence limit of the 95th percentile at or below which contaminant levels can be considered to be normal for the defined domain. Levels at or below the NBC may not be naturally occurring.

Results

Exploration of the available topsoil data, supplemented with information from the high density G-BASE stream sediment survey of Wales, shows two significant controls on the distribution of higher As concentrations in Wales. These are: soils where the parent material is in areas where metalliferous mineralisation and historical mining activity have resulted in elevated levels of As in the soil environment; and those areas associated with urbanisation and industrialisation. Therefore, two domains associated with elevated As in soils are defined, the Mineralisation Domain and the Urban 1 Domain. The area not covered by these two domains is referred to as the Principal Domain (Figure 3 and Table 1). Wales does not have the significant areas of As-bearing ironstones that are found in England, so no Ironstone Domain is identified for Wales based on the available data. The urban and industrial areas are relatively more significant areas of widespread high As levels than was seen for England, especially the three valleys draining the South Wales Coalfield, the catchments of the Loughor (Afon Llwchwr), Tawe (Afon Tawe and more commonly referred to as the Swansea Valley), and Neath (Afon Nedd), collectively referred to here as Urban 1. The low sampling density of the NSI samples poorly captures the levels of As seen in the higher density G-BASE stream sediment survey and the NBC results for the Mineralisation Domain are considered to be lower than what might be expected and any variability in typical concentrations between ore fields cannot be assessed.

In the NBC attribution, only the most significant areas at the national scale with the highest concentration range are classified as domains. Although three domains have been distinguished, further spatial variability will occur within these domains. The Principal Domain, for example, will contain urban areas outside the Urban 1 Domain where common historical land uses (e.g. metallurgical industries) may have caused diffuse increase of As in the area’s soil. Coal mining areas may also contain soils enriched in As due to the spreading of pyrite-bearing coal mine spoils, the As being released when the pyrites is oxidised. Similarly, peaty areas may contain organic matter-rich soils with high As concentrations.

Figure 3: Arsenic domain map.
USING NORMAL BACKGROUND CONCENTRATIONS

The NBCs are produced to support the Part 2A contaminated land Statutory Guidance (SG) (Wales) and help inform as to what are normal levels of contaminants. Using this guidance, along with the further information and resources provided, a NBC test can be carried out:

1. A soil sample under investigation for As concentration should be spatially located in one of the three domains described. This should be part of a preliminary step in which the scenario and conceptual site model are considered.

2. If the As concentration is at or below the NBC for the specified domain then the result “should not be considered to cause the land to qualify as contaminated land, unless there is a particular reason to consider otherwise” (SG, Section 3.22). If the latter applies, then proceed to the use of other screening tools or further site investigation as necessary and appropriate.

3. If there is no reason “to consider otherwise” then the decision can be made that there is no evidence that the land is contaminated under Part 2A with respect to As (SG, Sections 5.2 – 5.4), that is, the land lies outside Categories 1 or 2.

4. If the As concentration is above the domain NBC then using the additional resources, including those provided with this technical guidance, a more detailed investigation at a local scale should be carried out or the use of other screening tools considered as appropriate. This is to determine whether the concentrations reflect “levels of contaminants in the soil that are commonplace and widespread...and for which...there is no reason to consider that there is an unacceptable risk” (SG, Section 3.21). If this is so, then step 3 applies. In the case of As, for example, this may be an urban area within the Principal Domain where a particular land use has caused widespread low level diffuse pollution.

5. If the concentration of As in the soil is not considered to be commonplace and widespread then further testing is required (apply quantitative risk assessment (QRA)).

FURTHER RESOURCES

Additional resources on NBCs are available from the BGS project website. These resources include: project reports; a database of essential information about relevant soil data sets; technical guidance sheets for other contaminants; polygons defining domain boundaries in various GIS formats; and a project bibliography.

Because there are substantial information gaps relating to systematically collected soils across Wales, information on elevated contaminant levels in the surface environment are usefully informed by the BGS high density stream sediment survey (British Geological Survey. 2000. Regional geochemistry of Wales and part of west-central England: stream sediment and soil. Keyworth, Nottingham: British Geological Survey).

THIS GUIDANCE SHOULD BE READ IN CONJUNCTION WITH THE FOLLOWING:

Part 2A documents:


Project Reports:

Available from the Defra Project SP1008 web page and the British Geological Survey at: http://www.bgs.ac.uk/gbase/NBCDefraProject.html


ACKNOWLEDGEMENTS

The British Geological Survey has produced a series of Technical Guidance Sheets on NBCs for England as part of a project funded by Department for Environment Food and Rural Affairs (Defra) (Soils R&D Project SP1008, October 2011 – March 2012). The work was extended to apply the same methodology for determining NBCs in Wales. This guidance sheet was compiled by Chris Johnson, Louise Ander and Mark Cave. The project thanks the many people and projects that have assisted in the provision of data, in particular, the BGS G-BASE project and the NSRI NSI soil samples (reanalysed by BGS). These systematic national surveys have created unbiased data sets sampled and analysed to consistent and high standards of quality that have enabled the NBCs for many inorganic contaminants to be calculated with a high level of confidence.

Version 1.0

BIBLIOGRAPHIC REFERENCE

When referring to this document the following bibliographic reference should be made: